Joshua R Elmore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9455779/publications.pdf

Version: 2024-02-01

687363 996975 1,300 17 13 15 citations h-index g-index papers 19 19 19 1344 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Corrigendum to "Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440―[Metab. Eng. 59 (2020) 64–75]. Metabolic Engineering, 2022, 72, 66-67.	7.0	O
2	Engineering Citrobacter freundii using CRISPR/Cas9 system. Journal of Microbiological Methods, 2022, 200, 106533.	1.6	3
3	Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion. Nature Communications, 2021, 12, 2261.	12.8	72
4	Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to \hat{l}^2 -ketoadipic acid by Pseudomonas putida KT2440. Metabolic Engineering, 2021, 67, 250-261.	7.0	74
5	Metabolic engineering of <i>Pseudomonas putida</i> for increased polyhydroxyalkanoate production from lignin. Microbial Biotechnology, 2020, 13, 290-298.	4.2	120
6	Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440. Metabolic Engineering, 2020, 59, 64-75.	7.0	76
7	Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Metabolic Engineering, 2020, 62, 62-71.	7.0	63
8	Evaluation of chromosomal insertion loci in the Pseudomonas putida KT2440 genome for predictable biosystems design. Metabolic Engineering Communications, 2020, 11, e00139.	3.6	18
9	Innovative Chemicals and Materials from Bacterial Aromatic Catabolic Pathways. Joule, 2019, 3, 1523-1537.	24.0	142
10	Engineered Pseudomonas putida KT2440 co-utilizes galactose and glucose. Biotechnology for Biofuels, 2019, 12, 295.	6.2	15
11	Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440. Metabolic Engineering Communications, 2017, 5, 1-8.	3.6	93
12	Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system. Genes and Development, 2016, 30, 447-459.	5.9	212
13	DNA targeting by the type I-G and type I-A CRISPR–Cas systems of <i>Pyrococcus furiosus</i> Nucleic Acids Research, 2015, 43, gkv1140.	14.5	38
14	Essential Structural and Functional Roles of the Cmr4 Subunit in RNA Cleavage by the Cmr CRISPR-Cas Complex. Cell Reports, 2014, 9, 1610-1617.	6.4	57
15	Programmable plasmid interference by the CRISPR-Cas system in <i><i>Thermococcus kodakarensis</i><ii>RNA Biology, 2013, 10, 828-840.</ii></i>	3.1	34
16	Essential Features and Rational Design of CRISPR RNAs that Function with the Cas RAMP Module Complex to Cleave RNAs. Molecular Cell, 2012, 45, 292-302.	9.7	275
17	The CRISPRâ€Cas system: small RNAâ€guided invader silencing in prokaryotes. FASEB Journal, 2012, 26, 353.3.	0.5	О