Cheng-ping Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9455686/publications.pdf Version: 2024-02-01

CHENC-DINC HUANC

#	Article	IF	CITATIONS
1	Extraordinary Acoustic Transmission through a 1D Grating with Very Narrow Apertures. Physical Review Letters, 2007, 99, 174301.	2.9	242
2	Optical switching of a metamaterial by temperature controlling. Applied Physics Letters, 2010, 96, .	1.5	106
3	Study of plasmon resonance in a gold nanorod with an LC circuit model. Optics Express, 2009, 17, 6407.	1.7	64
4	Enhanced optical transmission through metal films with rotation-symmetrical hole arrays. Applied Physics Letters, 2005, 87, 091105.	1.5	48
5	Dual effect of surface plasmons in light transmission through perforated metal films. Physical Review B, 2007, 75, .	1.1	45
6	Break Through the Limitation of Malus' Law with Plasmonic Polarizers. Advanced Optical Materials, 2014, 2, 723-728.	3.6	40
7	Interactions of Nanorod Particles in the Strong Coupling Regime. Journal of Physical Chemistry C, 2010, 114, 21123-21131.	1.5	36
8	Long-Wavelength Optical Properties of a Plasmonic Crystal. Physical Review Letters, 2010, 104, 016402.	2.9	36
9	Enhancing spoof surface-plasmons with gradient metasurfaces. Scientific Reports, 2015, 5, 8772.	1.6	36
10	Optical properties of a planar metamaterial with chiral symmetry breaking. Optics Letters, 2011, 36, 3359.	1.7	34
11	Ultra-broadband and strongly enhanced diffraction with metasurfaces. Scientific Reports, 2015, 5, 10119.	1.6	26
12	Piezoelectric-Induced Polariton Coupling in a Superlattice. Physical Review Letters, 2005, 94, 117401.	2.9	24
13	Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating. Physical Review B, 2012, 85, .	1.1	23
14	Enhanced optical transmission through metal-dielectric multilayer gratings. Applied Physics Letters, 2010, 97, 011905.	1.5	22
15	Plasmonics: Manipulating Light at the Subwavelength Scale. Active and Passive Electronic Components, 2007, 2007, 1-13.	0.3	19
16	Efficient and broadband polarization conversion with the coupled metasurfaces. Optics Express, 2015, 23, 32015.	1.7	18
17	Cascaded frequency doubling and electro-optic coupling in a single optical superlattice. Applied Physics B: Lasers and Optics, 2005, 80, 741-744.	1.1	16
18	Optical resonances in a composite asymmetric plasmonic nanostructure. Journal of Applied Physics, 2011, 109, 114310.	1.1	16

#	Article	IF	CITATIONS
19	Transmission resonance in a composite plasmonic structure. Physical Review B, 2009, 79, .	1.1	15
20	Second-harmonic generation in a periodically poled congruent LiTaO3 sample with phase-tuned nonlinear Cherenkov radiation. Applied Physics Letters, 2012, 100, 022905.	1.5	15
21	Wide-Band and High-Efficiency 90° Polarization Rotator Based on Tri-Layered Perforated Metal Films. Journal of Lightwave Technology, 2017, 35, 4817-4823.	2.7	15
22	Enhanced electromagnetic pressure in a sandwiched reflection grating. Physical Review B, 2012, 86, .	1.1	14
23	Sound energy harvesting using an acoustic grating. Journal of Applied Physics, 2015, 117, .	1.1	14
24	Splitting of transmission peak due to the hole symmetry breaking. Applied Physics Letters, 2009, 94, .	1.5	13
25	Optical properties of a metal film perforated with coaxial elliptical hole arrays. Physical Review E, 2010, 81, 057601.	0.8	13
26	Hybrid of surface plasmon polaritons and waveguide resonances through double-layer metallic gratings. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 587.	0.9	13
27	Suppression of transmission minima and maxima with structured metal surface. Applied Physics Letters, 2006, 89, 221121.	1.5	12
28	Dual Channels of Transmission Using Rectangular Hole Dimers. Journal of Physical Chemistry C, 2011, 115, 24621-24626.	1.5	12
29	Plasmon coupling in circular-hole dimers: From separation- to touching-coupling regimes. Journal of Applied Physics, 2012, 112, .	1.1	11
30	Dual functionality of a single-layer metasurface: polarization rotator and polarizer. Journal of Optics (United Kingdom), 2020, 22, 035101.	1.0	11
31	Light transmission through Fibonacci and periodic sub-wavelength slit arrays. Journal of Optics, 2008, 10, 075202.	1.5	10
32	Deep subwavelength Fabry-Perot resonances. EPJ Applied Metamaterials, 2014, 1, 2.	0.8	10
33	Trapped-mode resonances in all-metallic metasurfaces comprising rectangular-hole dimers with broken symmetry. Journal of Applied Physics, 2019, 126, .	1.1	10
34	Optical transmission through gold film with Archimedean-like subwavelength hole arrays. Journal of Applied Physics, 2007, 101, 073505.	1.1	9
35	Piezoelectric superlattice: From piezoelectric to Huang-Kun-like equations. AIP Advances, 2012, 2, 042117.	0.6	9
36	Super Diffraction in a Single-Layer Metasurface. Journal of Lightwave Technology, 2016, 34, 3312-3316.	2.7	9

#	Article	IF	CITATIONS
37	Transmissive and efficient 90° polarization rotation with a single-layer plasmonic structure. Applied Physics Express, 2017, 10, 112201.	1.1	9
38	Improved Performance of Silicon Nanowire-Based Solar Cells with Diallyl Disulfide Passivation. Journal of Physical Chemistry C, 2019, 123, 4664-4673.	1.5	9
39	Effect of electro-optic modulation on coupled quasi-phase-matched frequency conversion. Applied Optics, 2005, 44, 4980.	2.1	8
40	Phaselike resonance behavior in optical transmission of sandwich coaxial square ring arrays. Applied Physics Letters, 2010, 96, .	1.5	8
41	Fanolike resonance due to plasmon excitation in linear chains of metal bumps. Optics Express, 2011, 19, 10485.	1.7	8
42	Light reflection from a metal surface with subwavelength cavities. Applied Physics Letters, 2008, 93, 081917.	1.5	7
43	Novel optical transmission property of metal–dielectric multilayered structure. Journal Physics D: Applied Physics, 2009, 42, 225406.	1.3	7
44	Theory of extraordinary light transmission through sub-wavelength circular hole arrays. Journal of Optics (United Kingdom), 2010, 12, 015004.	1.0	7
45	Single-layer graphene optical modulator based on arrayed hybrid plasmonic nanowires. Optics Express, 2021, 29, 30104.	1.7	7
46	Arbitrarily Directional and Tunable Polarization Rotating Effect with Coupled Metal Screens. Physical Review Applied, 2018, 10, .	1.5	6
47	Omnidirectional Absorber by the Void Plasmon Effect in the Visible Region with Greatly Enhanced Localized Electric Field. Nanoscale Research Letters, 2019, 14, 46.	3.1	6
48	Variable-temperature Raman scattering and X-ray diffraction studies of Bi3.25Nd0.75Ti3O12 ceramics. Solid State Communications, 2006, 138, 229-233.	0.9	5
49	Simultaneous harmonic generation and polarization control inÂanÂoptical superlattice. Applied Physics B: Lasers and Optics, 2010, 99, 673-677.	1.1	5
50	A planar metamaterial based on metallic rectangular-ring pair for narrow electromagnetically induced transparency-like effect. Journal of Applied Physics, 2020, 128, 065105.	1.1	5
51	Excitation and Dynamic Tuning of High- <i>Q</i> Resonances with Electromagnetic Coupling Asymmetry. Physical Review Applied, 2020, 14, .	1.5	5
52	Electromagnetic interaction in stacked split ring resonator arrays. Journal of Physics Condensed Matter, 2011, 23, 215303.	0.7	4
53	Polarization-tunable polariton excitation in a compound plasmonic crystal. Applied Physics Letters, 2012, 100, .	1.5	4
54	Enhanced absorption and optical force in a sandwiched grating at the terahertz band. Europhysics Letters, 2013, 102, 34001.	0.7	4

#	Article	IF	CITATIONS
55	From Ewald sphere to Ewald shell in nonlinear optics. Scientific Reports, 2016, 6, 29365.	1.6	4
56	Anomalous diffraction in super-wavelength plasmonic metasurfaces. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3949-3955.	0.9	4
57	Interference-type plasmonic polarizers and generalized law of Malus. Journal of Optics (United) Tj ETQq1 1 0.784	314 rgBT , 1.0	Oyerlock 10
58	Phonon polaritons in a nonaxial aligned piezoelectric superlattice. Journal of Applied Physics, 2009, 105, 074102.	1.1	3
59	Metasurfaces for de Broglie waves. Physical Review B, 2021, 104, .	1.1	3
60	Generation of three primary colours through coupled quasi-phase-matched processes. Journal of Physics Condensed Matter, 2002, 14, 13899-13904.	0.7	2
61	Third harmonic generation in a periodic structure with simultaneous linear and nonlinear modulation. Physica Status Solidi (B): Basic Research, 2005, 242, 1694-1699.	0.7	2
62	Note: Vibration energy harvesting based on a round acoustic fence. Review of Scientific Instruments, 2015, 86, 076101.	0.6	2
63	Cutoff effect of light transmission through structured metal films. Applied Physics Letters, 2008, 92, 191914.	1.5	1
64	Enhanced third harmonic generation by introducing quasi-phase mismatches due to electro-optic effect. Laser Physics, 2011, 21, 954-957.	0.6	1
65	Optical properties of a periodic array of slit-groove. Journal of Applied Physics, 2012, 111, 034316.	1.1	1
66	Magnetoelectrically coupled polariton excitation in a plasmonic crystal composed of nanorod dimers. Journal of Physics Condensed Matter, 2012, 24, 265501.	0.7	1
67	Decreased cutoff wavelength of a rectangular hole dimer in a metal. Journal of Optics (United) Tj ETQq1 1 0.7843	314 rgBT /	Overlock 10
68	High-Efficiency Wide-Band Cross-Polarization Conversion Using Bi-layered Metal Hole Pairs. Chinese Physics Letters, 2018, 35, 104204.	1.3	1
69	Realizing the Multiband Absorption in the Visible Region via the Collaboration of Fabry–Pérot, Propagating Surface Plasmons, and Void Plasmons Resonance Effects. Physica Status Solidi (B): Basic Research, 2020, 257, 1900327.	0.7	1
70	Composite optical interference in non-unitary and unitary beam-splitter systems. Journal of Optics (India), 2021, 50, 495-501.	0.8	1
71	Trapped mode resonances in symmetric rectangular-hole tetramers. Journal Physics D: Applied Physics, 0, , .	1.3	1
72	Transparent absorber composed of two stacked ultrathin metal films perforated with small holes. Optics Express, 2022, 30, 22922.	1.7	1

5

#	Article	IF	CITATIONS
73	Generation of three primary colours with a 1064 nm pump wave in a single optical superlattice. Journal of Physics Condensed Matter, 2003, 15, 4651-4655.	0.7	0
74	Greatly enhanced electric field by the improved metal–insulator–metal structure in the visible region. Nanotechnology, 2019, 30, 32LT01.	1.3	0
75	Highly-efficient wavefront bending with a single-layer perforated metasurface. Journal of Optics (United Kingdom), 2021, 23, 025103.	1.0	0
76	Magnetic excitation of high-Q resonance with split-ring resonators. Engineering Research Express, 2021, 3, 045034.	0.8	0
77	Polarization Interference and Modulation in the Low-Frequency Range. Physical Review Applied, 2021, 16, .	1.5	0