Tom Michoel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9455071/publications.pdf

Version: 2024-02-01

279798 197818 2,869 71 23 49 h-index citations g-index papers 83 83 83 5719 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microglial brain regionâ^'dependent diversity and selective regional sensitivities to aging. Nature Neuroscience, 2016, 19, 504-516.	14.8	919
2	Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science, 2016, 353, 827-830.	12.6	241
3	Cross-Tissue Regulatory Gene Networks in Coronary Artery Disease. Cell Systems, 2016, 2, 196-208.	6.2	120
4	Prediction of human population responses to toxic compounds by a collaborative competition. Nature Biotechnology, 2015, 33, 933-940.	17.5	88
5	Integrative Multi-omics Module Network Inference with Lemon-Tree. PLoS Computational Biology, 2015, 11, e1003983.	3.2	86
6	Module networks revisited: computational assessment and prioritization of model predictions. Bioinformatics, 2009, 25, 490-496.	4.1	82
7	Plasma Cholesterol–Induced Lesion Networks Activated before Regression of Early, Mature, and Advanced Atherosclerosis. PLoS Genetics, 2014, 10, e1004201.	3. 5	64
8	Analysis of a Gibbs sampler method for model-based clustering of gene expression data. Bioinformatics, 2008, 24, 176-183.	4.1	59
9	Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Systems Biology, 2009, 3, 49.	3.0	55
10	A mechanistic framework for cardiometabolic and coronary artery diseases., 2022, 1, 85-100.		51
11	Predicting Gene Function from Uncontrolled Expression Variation among Individual Wild-Type <i>Arabidopsis</i> Plants. Plant Cell, 2013, 25, 2865-2877.	6.6	50
12	Alignment and integration of complex networks by hypergraph-based spectral clustering. Physical Review E, 2012, 86, 056111.	2.1	49
13	Module Network Inference from a Cancer Gene Expression Data Set Identifies MicroRNA Regulated Modules. PLoS ONE, 2010, 5, e10162.	2.5	46
14	Contribution of Gene Regulatory Networks to Heritability of CoronaryÂArtery Disease. Journal of the American College of Cardiology, 2019, 73, 2946-2957.	2.8	45
15	Human Validation of Genes Associated With a Murine Atherosclerotic Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1240-1246.	2.4	44
16	Network analysis of coronary artery disease risk genes elucidates disease mechanisms and druggable targets. Scientific Reports, 2018, 8, 3434.	3.3	43
17	Variation in the SERPINA6/SERPINA1 locus alters morning plasma cortisol, hepatic corticosteroid binding globulin expression, gene expression in peripheral tissues, and risk of cardiovascular disease. Journal of Human Genetics, 2021, 66, 625-636.	2.3	40
18	kruX: matrix-based non-parametric eQTL discovery. BMC Bioinformatics, 2014, 15, 11.	2.6	39

#	Article	IF	CITATIONS
19	Expression Quantitative Trait Loci Acting Across Multiple Tissues Are Enriched in Inherited Risk for Coronary Artery Disease. Circulation: Cardiovascular Genetics, 2015, 8, 305-315.	5.1	39
20	Human Y Chromosome Exerts Pleiotropic Effects on Susceptibility to Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2386-2401.	2.4	36
21	Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data. PLoS Computational Biology, 2017, 13, e1005703.	3.2	36
22	Validating module network learning algorithms using simulated data. BMC Bioinformatics, 2007, 8, S5.	2.6	34
23	SNAIL1 combines competitive displacement of ASCL2 andÂepigenetic mechanisms to rapidly silence the EPHB3 tumor suppressor in colorectal cancer. Molecular Oncology, 2015, 9, 335-354.	4.6	34
24	Silencing of the EPHB3 tumor-suppressor gene in human colorectal cancer through decommissioning of a transcriptional enhancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4886-4891.	7.1	32
25	Prediction of a gene regulatory network linked to prostate cancer from gene expression, microRNA and clinical data. Bioinformatics, 2010, 26, i638-i644.	4.1	30
26	Application of long read sequencing to determine expressed antigen diversity in Trypanosoma brucei infections. PLoS Neglected Tropical Diseases, 2019, 13, e0007262.	3.0	25
27	Transcription regulatory networks in Caenorhabditis elegans inferred through reverse-engineering of gene expression profiles constitute biological hypotheses for metazoan development. Molecular BioSystems, 2009, 5, 1817.	2.9	23
28	Structural and functional organization of RNA regulons in the post-transcriptional regulatory network of yeast. Nucleic Acids Research, 2011, 39, 9108-9117.	14.5	23
29	MotifSuite: workflow for probabilistic motif detection and assessment. Bioinformatics, 2012, 28, 1931-1932.	4.1	23
30	Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells. Journal of Leukocyte Biology, 2015, 97, 985-995.	3.3	23
31	Smoking is Associated to DNA Methylation in Atherosclerotic Carotid Lesions. Circulation Genomic and Precision Medicine, 2018, 11, e002030.	3.6	23
32	Variants in ALOX5, ALOX5AP and LTA4H are not associated with atherosclerotic plaque phenotypes: The Athero-Express Genomics Study. Atherosclerosis, 2015, 239, 528-538.	0.8	22
33	Postâ€transcriptional regulatory networks play a key role in noise reduction that is conserved from microâ€organisms to mammals. FEBS Journal, 2012, 279, 3501-3512.	4.7	20
34	The Index-Based Subgraph Matching Algorithm with General Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph Enumeration. PLoS ONE, 2014, 9, e97896.	2.5	19
35	Enhancer decommissioning by Snail1-induced competitive displacement of TCF7L2 and down-regulation of transcriptional activators results in EPHB2 silencing. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1353-1367.	1.9	18
36	The Index-Based Subgraph Matching Algorithm (ISMA): Fast Subgraph Enumeration in Large Networks Using Optimized Search Trees. PLoS ONE, 2013, 8, e61183.	2.5	17

#	Article	lF	CITATIONS
37	Lim Domain Binding 2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2068-2077.	2.4	17
38	Functional transcription factor target discovery via compendia of binding and expression profiles. Scientific Reports, 2016, 6, 20649.	3.3	16
39	Enrichment and aggregation of topological motifs are independent organizational principles of integrated interaction networks. Molecular BioSystems, 2011, 7, 2769.	2.9	15
40	Multi-Species Network Inference Improves Gene Regulatory Network Reconstruction for Early Embryonic Development inDrosophila. Journal of Computational Biology, 2015, 22, 253-265.	1.6	15
41	Carbonyl reductase 1 catalyzes $20\hat{1}^2$ -reduction of glucocorticoids, modulating receptor activation and metabolic complications of obesity. Scientific Reports, 2017, 7, 10633.	3.3	15
42	High-Dimensional Bayesian Network Inference From Systems Genetics Data Using Genetic Node Ordering. Frontiers in Genetics, 2019, 10, 1196.	2.3	14
43	CyClus3D: a Cytoscape plugin for clustering network motifs in integrated networks. Bioinformatics, 2011, 27, 1587-1588.	4.1	13
44	Model-based clustering of multi-tissue gene expression data. Bioinformatics, 2020, 36, 1807-1813.	4.1	13
45	Helicoidal transfer matrix model for inhomogeneous DNA melting. Physical Review E, 2006, 73, 011908.	2.1	12
46	Context-specific transcriptional regulatory network inference from global gene expression maps using double two-way t-tests. Bioinformatics, 2012, 28, 2325-2332.	4.1	12
47	Variable reproducibility in genomeâ€scale public data: A case study using ENCODE ChIP sequencing resource. FEBS Letters, 2015, 589, 3866-3870.	2.8	12
48	Characterizing regulatory path motifs in integrated networks using perturbational data. Genome Biology, 2010, 11, R32.	9.6	10
49	Changes in the gene expression profile during spontaneous migraine attacks. Scientific Reports, 2021, 11, 8294.	3.3	10
50	Goldstone Boson Normal Coordinates. Communications in Mathematical Physics, 2001, 216, 461-490.	2.2	9
51	Detection of Regulator Genes and eQTLs in Gene Networks. , 2016, , 1-23.		9
52	A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks. BMC Bioinformatics, 2021, 22, 525.	2.6	8
53	An Algorithm to Automatically Generate the Combinatorial Orbit Counting Equations. PLoS ONE, 2016, 11, e0147078.	2.5	7
54	Central limit theorems for the large-spin asymptotics of quantum spins. Probability Theory and Related Fields, 2004, 130, 493-517.	1.8	6

#	Article	IF	Citations
55	Learning Differential Module Networks Across Multiple Experimental Conditions. Methods in Molecular Biology, 2019, 1883, 303-321.	0.9	6
56	Reverseâ€Engineering Transcriptional Modules from Gene Expression Data. Annals of the New York Academy of Sciences, 2009, 1158, 36-43.	3.8	5
57	Causal Transcription Regulatory Network Inference Using Enhancer Activity as a Causal Anchor. International Journal of Molecular Sciences, 2018, 19, 3609.	4.1	5
58	A regression tree-based Gibbs sampler to learn the regulation programs in a transcription regulatory module network. , 2010, , .		4
59	An Integrative Approach to Infer Regulation Programs in a Transcription Regulatory Module Network. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-8.	3.0	4
60	Natural coordinate descent algorithm for L1-penalised regression in generalised linear models. Computational Statistics and Data Analysis, 2016, 97, 60-70.	1.2	4
61	Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast. Molecular Omics, 2021, 17, 241-251.	2.8	4
62	Implementing quantum gates using the ferromagnetic spin-JXXZ chain with kink boundary conditions. New Journal of Physics, 2010, 12, 025003.	2.9	3
63	Meta-analysis of Liver and Heart Transcriptomic Data for Functional Annotation Transfer in Mammalian Orthologs. Computational and Structural Biotechnology Journal, 2017, 15, 425-432.	4.1	3
64	Restricted maximum-likelihood method for learning latent variance components in gene expression data with known and unknown confounders. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	3
65	Transport of interface states in the Heisenberg chain. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 492001.	2.1	2
66	Accurate wisdom of the crowd from unsupervised dimension reduction. Royal Society Open Science, 2019, 6, 181806.	2.4	1
67	Whole-Transcriptome Causal Network Inference with Genomic and Transcriptomic Data. Methods in Molecular Biology, 2019, 1883, 95-109.	0.9	1
68	Interferencing in Coupled Bose–Einstein Condensates. Journal of Statistical Physics, 2001, 102, 1383-1405.	1.2	0
69	An integrative approach to infer regulation programs in a transcription regulatory module network. , $2011, \ldots$		0
70	Common variants in the gene encoding corticosteroid binding globulin influence cortisol-responsive gene networks in human adipose tissue. Endocrine Abstracts, 0, , .	0.0	0
71	OR09-04 Common Genetic Variants Associated with SERPINA6 Expression in Liver Influence Cortisol-Responsive Transcriptional Networks in Human Adipose Tissue. Journal of the Endocrine Society, 2020, 4, .	0.2	0