
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9454612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nicotinic Acetylcholine Receptors Expressed by Striatal Interneurons Inhibit Striatal Activity and Control Striatal-Dependent Behaviors. Journal of Neuroscience, 2022, 42, 2786-2803.	1.7	9
2	<scp>VGLUT</scp> 3 gates psychomotor effects induced by amphetamine. Journal of Neurochemistry, 2019, 148, 779-795.	2.1	15
3	A proline-rich motif on VGLUT1 reduces synaptic vesicle super-pool and spontaneous release frequency. ELife, 2019, 8, .	2.8	15
4	Structural and Functional Characterization of the Interaction of Snapin with the Dopamine Transporter: Differential Modulation of Psychostimulant Actions. Neuropsychopharmacology, 2018, 43, 1041-1051.	2.8	7
5	Endocytosis of Activated Muscarinic m2 Receptor (m2R) in Live Mouse Hippocampal Neurons Occurs via a Clathrin-Dependent Pathway. Frontiers in Cellular Neuroscience, 2018, 12, 450.	1.8	7
6	Vesicular acetylcholine transporter (<scp>VAC</scp> hT) overâ€expression induces major modifications of striatal cholinergic interneuron morphology and function. Journal of Neurochemistry, 2017, 142, 857-875.	2.1	23
7	Characterization of a Human Point Mutation of VGLUT3 (p.A211V) in the Rodent Brain Suggests a Nonuniform Distribution of the Transporter in Synaptic Vesicles. Journal of Neuroscience, 2017, 37, 4181-4199.	1.7	15
8	KCC3 loss-of-function contributes to Andermann syndrome by inducing activity-dependent neuromuscular junction defects. Neurobiology of Disease, 2017, 106, 35-48.	2.1	8
9	Regulation of the Hippocampal Network by VGLUT3-Positive CCK- GABAergic Basket Cells. Frontiers in Cellular Neuroscience, 2017, 11, 140.	1.8	48
10	A selective and sensitive near-infrared fluorescent probe for acetylcholinesterase imaging. Chemical Communications, 2016, 52, 11599-11602.	2.2	26
11	Subcellular and Synaptic Localization of Muscarinic Receptors in Neurons Using High-Resolution Electron Microscopic Preembedding Immunogold Technique. Neuromethods, 2016, , 131-146.	0.2	0
12	Trans-Modulation of the Somatostatin Type 2A Receptor Trafficking by Insulin-Regulated Aminopeptidase Decreases Limbic Seizures. Journal of Neuroscience, 2015, 35, 11960-11975.	1.7	16
13	A critical and previously unsuspected role for doublecortin at the neuromuscular junction in mouse and human. Neuromuscular Disorders, 2015, 25, 461-473.	0.3	15
14	Dymeclin deficiency causes postnatal microcephaly, hypomyelination and reticulum-to-Golgi trafficking defects in mice and humans. Human Molecular Genetics, 2015, 24, 2771-2783.	1.4	25
15	Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO Journal, 2014, 33, 157-170.	3.5	121
16	Schwann Cells Sense and Control Acetylcholine Spillover at the Neuromuscular Junction by α7 Nicotinic Receptors and Butyrylcholinesterase. Journal of Neuroscience, 2014, 34, 11870-11883.	1.7	51
17	Peripheral nerve hyperexcitability with preterminal nerve and neuromuscular junction remodeling is a hallmark of Schwartz-Jampel syndrome. Neuromuscular Disorders, 2013, 23, 998-1009.	0.3	23
18	CLIPR-59: a protein essential for neuromuscular junction stability during mouse late embryonic development. Development (Cambridge), 2013, 140, 1583-1593.	1.2	6

#	Article	IF	CITATIONS
19	Postsynaptic muscarinic m2 receptors at cholinergic and glutamatergic synapses of mouse brainstem motoneurons. Journal of Comparative Neurology, 2013, 521, 2008-2024.	0.9	8
20	Characterization of the Spinal Nucleus of the Bulbocavernosus Neuromuscular System in Male Mice Lacking Androgen Receptor in the Nervous System. Endocrinology, 2012, 153, 3376-3385.	1.4	23
21	Near omplete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. Journal of Neurochemistry, 2012, 122, 1065-1080.	2.1	29
22	Distinct localization of collagen Q and PRiMA forms of acetylcholinesterase at the neuromuscular junction. Molecular and Cellular Neurosciences, 2011, 46, 272-281.	1.0	28
23	Drastic decrease in dopamine receptor levels in the striatum of acetylcholinesterase knock-out mouse. Chemico-Biological Interactions, 2010, 183, 194-201.	1.7	11
24	Contributions of selective knockout studies to understanding cholinesterase disposition and function. Chemico-Biological Interactions, 2010, 187, 72-77.	1.7	16
25	Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb. Journal of Comparative Neurology, 2010, 518, 1976-1994.	0.9	53
26	c-mip Impairs Podocyte Proximal Signaling and Induces Heavy Proteinuria. Science Signaling, 2010, 3, ra39.	1.6	99
27	A Novel System for the Efficient Generation of Antibodies Following Immunization of Unique Knockout Mouse Strains. PLoS ONE, 2010, 5, e12892.	1.1	21
28	Regulation of Intraneuronal Trafficking of G-Protein-Coupled Receptors by Neurotransmitters In Vivo. , 2010, , 25-41.		0
29	Targeting of Acetylcholinesterase in Neurons In Vivo: A Dual Processing Function for the Proline-Rich Membrane Anchor Subunit and the Attachment Domain on the Catalytic Subunit. Journal of Neuroscience, 2009, 29, 4519-4530.	1.7	58
30	Influence of differential expression of acetylcholinesterase in brain and muscle on respiration. Respiratory Physiology and Neurobiology, 2009, 165, 40-48.	0.7	10
31	Identification of an Agrin Mutation that Causes Congenital Myasthenia and Affects Synapse Function. American Journal of Human Genetics, 2009, 85, 155-167.	2.6	158
32	Identification of an Agrin Mutation that Causes Congenital Myasthenia and Affects Synapse Function. American Journal of Human Genetics, 2009, 85, 536.	2.6	5
33	Evidence of a dosage effect and a physiological endplate acetylcholinesterase deficiency in the first mouse models mimicking Schwartz–Jampel syndrome neuromyotonia. Human Molecular Genetics, 2008, 17, 3166-3179.	1.4	53
34	Distribution of Smoothened at hippocampal mossy fiber synapses. NeuroReport, 2007, 18, 395-399.	0.6	19
35	Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice. Life Sciences, 2007, 80, 2380-2385.	2.0	35
36	Activated Somatostatin Type 2 Receptors Traffic In Vivo in Central Neurons from Dendrites to the Trans Golgi Before Recycling. Traffic, 2007, 8, 820-834.	1.3	39

#	Article	IF	CITATIONS
37	Intraneuronal trafficking of G-protein-coupled receptors in vivo. Trends in Neurosciences, 2006, 29, 140-147.	4.2	50
38	Remodeling of the Neuromuscular Junction in Mice With Deleted Exons 5 and 6 of Acetylcholinesterase. Journal of Molecular Neuroscience, 2006, 30, 99-100.	1.1	7
39	Aging and subcellular localization of m2 muscarinic autoreceptor in basalocortical neurons in vivo. Neurobiology of Aging, 2005, 26, 1061-1072.	1.5	11
40	Plasticity of somatostatin and somatostatin sst2A receptors in the rat dentate gyrus during kindling epileptogenesis. European Journal of Neuroscience, 2004, 19, 2531-2538.	1.2	24
41	Dramatic depletion of cell surface muscarinic receptor due to limited delivery from intracytoplasmic stores in neurons of acetylcholinesterase-deficient mice. , 2004, , 477-479.		0
42	"In vivo―intraneuronal trafficking of G protein coupled receptors in the striatum: regulation by dopaminergic and cholinergic environment. Biology of the Cell, 2003, 95, 477-488.	0.7	25
43	Trafficking of the muscarinic m2 autoreceptor in cholinergic basalocortical neurons in vivo: Differential regulation of plasma membrane receptor availability and intraneuronal localization in acetylcholinesterase-deficient and -inhibited mice. Journal of Comparative Neurology, 2003, 462, 302-314.	0.9	31
44	Dramatic depletion of cell surface m2 muscarinic receptor due to limited delivery from intracytoplasmic stores in neurons of acetylcholinesterase-deficient mice. Molecular and Cellular Neurosciences, 2003, 23, 121-133.	1.0	41
45	Acute and Chronic Acetylcholinesterase Inhibition Regulates in Vivo the Localization and Abundance of Muscarinic Receptors m2 and m4 at the Cell Surface and in the Cytoplasm of Striatal Neurons. Molecular and Cellular Neurosciences, 2002, 20, 244-256.	1.0	31
46	A Third Vesicular Glutamate Transporter Expressed by Cholinergic and Serotoninergic Neurons. Journal of Neuroscience, 2002, 22, 5442-5451.	1.7	571
47	In Vivo Internalization of the Somatostatin sst2A Receptor in Rat Brain: Evidence for Translocation of Cell-Surface Receptors into the Endosomal Recycling Pathway. Molecular and Cellular Neurosciences, 2001, 17, 646-661.	1.0	55
48	The Existence of a Second Vesicular Glutamate Transporter Specifies Subpopulations of Glutamatergic Neurons. Journal of Neuroscience, 2001, 21, RC181-RC181.	1.7	530
49	Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra. Neuroscience, 2000, 101, 1037-1051.	1.1	64
50	Regulation of the Subcellular Distribution of m4 Muscarinic Acetylcholine Receptors in Striatal NeuronsIn Vivoby the Cholinergic Environment: Evidence for Regulation of Cell Surface Receptors by Endogenous and Exogenous Stimulation. Journal of Neuroscience, 1999, 19, 10237-10249.	1.7	77
51	In vivo regulation of intraneuronal trafficking of G protein-coupled receptors for neurotransmitters. Trends in Pharmacological Sciences, 1999, 20, 315-319.	4.0	31
52	Levodopa induces a cytoplasmic localization of D1 dopamine receptors in striatal neurons in Parkinson's disease. Annals of Neurology, 1999, 46, 103-111.	2.8	77
53	Subcellular and subsynaptic distribution of the NR1 subunit of the NMDA receptor in the neostriatum and globus pallidus of the rat: co-localization at synapses with the GluR2/3 subunit of the AMPA receptor. European Journal of Neuroscience, 1998, 10, 3721-3736.	1.2	109
54	Subcellular Redistribution of m2 Muscarinic Acetylcholine Receptors in Striatal Interneurons <i>In Vivo</i> after Acute Cholinergic Stimulation. Journal of Neuroscience, 1998, 18, 10207-10218.	1.7	104

#	Article	IF	CITATIONS
55	Cellular, Subcellular, and Subsynaptic Distribution of AMPA-Type Glutamate Receptor Subunits in the Neostriatum of the Rat. Journal of Neuroscience, 1997, 17, 819-833.	1.7	272
56	Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: A post mortem in situ hybridization study with special reference to Parkinson's disease. Journal of Neural Transmission, 1996, 103, 1043-1052.	1.4	84
57	Expression of glutamate receptors in the human and rat basal ganglia: Effect of the dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in parkinson's disease and rat with 6-OHDA lesion. , 1996, 368, 553-568.		80
58	Phenotype of Striatal Cells Expressing c-Fos Following Amphetamine Treatment of Rats with Intrastriatal Dopaminergic Grafts. European Journal of Neuroscience, 1996, 8, 2521-2529.	1.2	4
59	Chronic treatment with dizocilpine maleate increases the number of striatal neurons expressing the D2 receptor gene. Neuroscience, 1995, 65, 431-438.	1.1	22
60	Anatomical analysis of the neurons expressing the acetylcholinesterase gene in the rat brain, with special reference to the striatum. Neuroscience, 1995, 64, 995-1005.	1.1	26
61	Quantitative In Situ Hybridization Using Radioactive Probes in the Study of Gene Expression in Heterocellular Systems. , 1994, 33, 301-312.		16
62	Fos Immunoreactivity after Stimulation or Inhibition of Muscarinic Receptors Indicates Anatomical Specificity for Cholinergic Control of Striatal Efferent Neurons and Cortical Neurons in the Rat. European Journal of Neuroscience, 1993, 5, 1218-1225.	1.2	73
63	Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. Journal of Neuroscience, 1992, 12, 3591-3600.	1.7	293
64	Striatal neurons express increased level of dopamine D2 receptor mRNA in response to haloperidol treatment: A quantitative in situ hybridization study. Neuroscience, 1991, 45, 117-126.	1.1	85
65	Maitotoxin triggers the cortical reaction and phosphatidylinositol-4,5-bisphosphate breakdown in amphibian oocytes. FEBS Journal, 1988, 174, 655-662.	0.2	18