
Akira Takeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9454578/publications.pdf Version: 2024-02-01

Δνίρα Τάνερα

#	Article	IF	CITATIONS
1	Single-Cell Survey of Human Lymphatics Unveils Marked Endothelial Cell Heterogeneity and Mechanisms of Homing for Neutrophils. Immunity, 2019, 51, 561-572.e5.	14.3	149
2	Generation of colonic IgA-secreting cells in the caecal patch. Nature Communications, 2014, 5, 3704.	12.8	121
3	A Single-Cell Transcriptional Roadmap of the Mouse and Human Lymph Node Lymphatic Vasculature. Frontiers in Cardiovascular Medicine, 2020, 7, 52.	2.4	97
4	Constitutive Lymphocyte Transmigration across the Basal Lamina of High Endothelial Venules Is Regulated by the Autotaxin/Lysophosphatidic Acid Axis. Journal of Immunology, 2013, 190, 2036-2048.	0.8	95
5	The Ectoenzyme E-NPP3 Negatively Regulates ATP-Dependent Chronic Allergic Responses by Basophils and Mast Cells. Immunity, 2015, 42, 279-293.	14.3	70
6	Fibroblastic reticular cell-derived lysophosphatidic acid regulates confined intranodal T-cell motility. ELife, 2016, 5, e10561.	6.0	45
7	Systemic Blockade of Clever-1 Elicits Lymphocyte Activation Alongside Checkpoint Molecule Downregulation in Patients with Solid Tumors: Results from a Phase I/II Clinical Trial. Clinical Cancer Research, 2021, 27, 4205-4220.	7.0	29
8	Novel Regulators of Lymphocyte Trafficking across High Endothelial Venules. Critical Reviews in Immunology, 2011, 31, 147-169.	0.5	29
9	Lysophosphatidic acid receptors LPA ₄ and LPA ₆ differentially promote lymphocyte transmigration across high endothelial venules in lymph nodes. International Immunology, 2016, 28, 283-292.	4.0	27
10	Lymphatic Endothelial Cell Activation and Dendritic Cell Transmigration Is Modified by Genetic Deletion of Clever-1. Frontiers in Immunology, 2021, 12, 602122.	4.8	22
11	The molecular cues regulating immune cell trafficking. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2017, 93, 183-195.	3.8	15
12	Dynamic Changes in Endothelial Cell Adhesion Molecule Nepmucin/CD300LG Expression under Physiological and Pathological Conditions. PLoS ONE, 2013, 8, e83681.	2.5	13
13	Clever-1 contributes to lymphocyte entry into the spleen via the red pulp. Science Immunology, 2019, 4,	11.9	13
14	CD73 contributes to antiâ€inflammatory properties of afferent lymphatic endothelial cells in humans and mice. European Journal of Immunology, 2021, 51, 231-246.	2.9	12
15	Infection with the enteric pathogen C. rodentium promotes islet-specific autoimmunity by activating a lymphatic route from the gut to pancreatic lymph node. Mucosal Immunology, 2022, 15, 471-479.	6.0	10
16	Extracellular ATP Limits Homeostatic T Cell Migration Within Lymph Nodes. Frontiers in Immunology, 2021, 12, 786595.	4.8	8
17	Thymocytes in Lyve1-CRE/S1pr1f/f Mice Accumulate in the Thymus due to Cell-Intrinsic Loss of Sphingosine-1-Phosphate Receptor Expression. Frontiers in Immunology, 2016, 7, 489.	4.8	5
18	CD73 controls ocular adenosine levels and protects retina from light-induced phototoxicity. Cellular and Molecular Life Sciences, 2022, 79, 152.	5.4	5

Akira Takeda

#	Article	IF	CITATIONS
19	Single-Cell Transcriptomics of Human Lymph Node Stroma. STAR Protocols, 2020, 1, 100021.	1.2	1
20	S1P and LPA: Regulators of Immune Cell Egress and Ingress in Lymphoid Tissues. , 2016, , 533-536.		1
21	The Role of Lysophospholipids in Immune Cell Trafficking and Inflammation. , 2016, , 459-471.		Ο
22	Single cell trajectories reveal a developmental sequence from angiogenic capillary progenitors to mature high endothelial cells. FASEB Journal, 2021, 35, .	0.5	0
23	A Singleâ€Cell Transcriptional Roadmap of the Mouse and Human Lymph Node Lymphatic Vasculature. FASEB Journal, 2021, 35, .	0.5	Ο
24	Two-Photon Imaging of T-Cell Motility in Lymph Nodes: In Vivo and Ex Vivo Approaches. Methods in Molecular Biology, 2018, 1763, 43-52.	0.9	0