
Saeed R Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/945456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kidney stones. Nature Reviews Disease Primers, 2016, 2, 16008.	30.5	528
2	Reactive Oxygen Species as the Molecular Modulators of Calcium Oxalate Kidney Stone Formation: Evidence from Clinical and Experimental Investigations. Journal of Urology, 2013, 189, 803-811.	0.4	263
3	Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney International, 1994, 46, 847-854.	5.2	256
4	Prophylactic glutamine protects the intestinal mucosa from radiation injury. Cancer, 1990, 66, 62-68.	4.1	229
5	Modulators of urinary stone formation. Frontiers in Bioscience - Landmark, 2004, 9, 1450.	3.0	229
6	Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clinical and Experimental Nephrology, 2004, 8, 75-88.	1.6	219
7	Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Translational Andrology and Urology, 2014, 3, 256-276.	1.4	182
8	Lipid Peroxidation in Ethylene Glycol Induced Hyperoxaluria and Calcium Oxalate Nephrolithiasis. Journal of Urology, 1997, 157, 1059-1063.	0.4	159
9	Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urological Research, 2003, 31, 3-9.	1.5	158
10	Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urological Research, 2005, 33, 349-357.	1.5	158
11	FREE RADICAL SCAVENGERS, CATALASE AND SUPEROXIDE DISMUTASE PROVIDE PROTECTION FROM OXALATE-ASSOCIATED INJURY TO LLC-PK1AND MDCK CELLS. Journal of Urology, 2000, 164, 224-229.	0.4	151
12	Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome?. Urological Research, 2012, 40, 95-112.	1.5	145
13	Inhibition of Arterial Thrombus Formation by ApoA1 Milano. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 378-383.	2.4	138
14	Randall's plaque and calcium oxalate stone formation: role for immunity and inflammation. Nature Reviews Nephrology, 2021, 17, 417-433.	9.6	135
15	Herbal Medicines in the Management of Urolithiasis: Alternative or Complementary?. Planta Medica, 2009, 75, 1095-1103.	1.3	128
16	Increased expression of monocyte chemoattractant protein-1 (MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate, phosphate and uric acid crystals. Nephrology Dialysis Transplantation, 2003, 18, 664-669.	0.7	120
17	Modeling of hyperoxaluric calcium oxalate nephrolithiasis: Experimental induction of hyperoxaluria by hydroxy-L-proline. Kidney International, 2006, 70, 914-923.	5.2	120
18	Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelial cells. Kidney International, 2002, 61, 105-112.	5.2	119

#	Article	IF	CITATIONS
19	Expression of Osteopontin in Rat Kidneys: Induction During Ethylene Glycol Induced Calcium Oxalate Nephrolithiasis. Journal of Urology, 2002, 168, 1173-1181.	0.4	116
20	Presence of lipids in urine, crystals and stones: Implications for the formation of kidney stones. Kidney International, 2002, 62, 2062-2072.	5.2	114
21	Role of Organic Matrix in Urinary Stone Formation: An Ltrastructural Study of Crystal Matrix Interface of Calcium Oxalate Monohydrate Stones. Journal of Urology, 1993, 150, 239-245.	0.4	111
22	Acute Hyperoxaluria, Renal Injury and Calcium Oxalate Urolithiasis. Journal of Urology, 1992, 147, 226-230.	0.4	105
23	Role of Renal Epithelial Cells in the Initiation of Calcium Oxalate Stones. Nephron Experimental Nephrology, 2004, 98, e55-e60.	2.2	104
24	Renal tubular damage/dysfunction: key to the formation of kidney stones. Urological Research, 2006, 34, 86-91.	1.5	104
25	Unified theory on the pathogenesis of Randall's plaques and plugs. Urolithiasis, 2015, 43, 109-123.	2.0	101
26	Calcium phosphate–induced renal epithelial injury and stone formation: Involvement of reactive oxygen species. Kidney International, 2003, 64, 1283-1291.	5.2	99
27	Association of Randall Plaque With Collagen Fibers and Membrane Vesicles. Journal of Urology, 2012, 187, 1094-1100.	0.4	99
28	Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. American Journal of Physiology - Renal Physiology, 2010, 299, F469-F478.	2.7	87
29	Intratubular crystallization of calcium oxalate in the presence of membrane vesicles: An in vitro study. Kidney International, 2001, 59, 169-178.	5.2	83
30	Effect of Angiotensin II Receptor Blockage on Osteopontin Expression and Calcium Oxalate Crystal Deposition in Rat Kidneys. Journal of the American Society of Nephrology: JASN, 2004, 15, 635-644.	6.1	82
31	Cell Injury Associated Calcium Oxalate Crystalluria. Journal of Urology, 1990, 144, 1535-1538.	0.4	77
32	Activation of the NLRP3 Inflammasome in Association with Calcium Oxalate Crystal Induced Reactive Oxygen Species in Kidneys. Journal of Urology, 2015, 193, 1684-1691.	0.4	76
33	Urinary Enzymes and Calcium Oxalate Urolithiasis. Journal of Urology, 1989, 142, 846-849.	0.4	74
34	Interactions between Stone-Forming Calcific Crystals and Macromolecules. Urologia Internationalis, 1997, 59, 59-71.	1.3	72
35	Calcium Oxalate Stone Fragment and Crystal Phagocytosis by Human Macrophages. Journal of Urology, 2016, 195, 1143-1151.	0.4	72
36	Identification of Urinary Stone and Sediment Crystals by Scanning Electron Microscopy and X-Ray Microanalysis. Journal of Urology, 1986, 135, 818-825.	0.4	66

#	Article	IF	CITATIONS
37	Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-L-proline-induced hyperoxaluria in the male Sprague-Dawley rats. Nephrology Dialysis Transplantation, 2011, 26, 1785-1796.	0.7	66
38	Crystal Retention by Injured Urothelium of the Rat Urinary Bladder. Journal of Urology, 1984, 132, 153-157.	0.4	64
39	Superoxide from NADPH oxidase as second messenger for the expression of osteopontin and monocyte chemoattractant proteinâ€1 in renal epithelial cells exposed to calcium oxalate crystals. BJU International, 2009, 104, 115-120.	2.5	64
40	Temporal Changes in mRNA Expression for Bikunin in the Kidneys of Rats during Calcium Oxalate Nephrolithiasis. Journal of the American Society of Nephrology: JASN, 1999, 10, 986-996.	6.1	63
41	Calcium Oxalate Monohydrate Precipitation at Phosphatidylglycerol Langmuir Monolayers. Langmuir, 2000, 16, 6013-6019.	3.5	62
42	Nephrocalcinosis in animal models with and without stones. Urological Research, 2010, 38, 429-438.	1.5	62
43	Oxidized Low-Density Lipoproteins Facilitate Leukocyte Adhesion to Aortic Intima Without Affecting Endothelium-Dependent Relaxation. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 2076-2083.	2.4	61
44	CITRATE PROVIDES PROTECTION AGAINST OXALATE AND CALCIUM OXALATE CRYSTAL INDUCED OXIDATIVE DAMAGE TO RENAL EPITHELIUM. Journal of Urology, 2005, 173, 640-646.	0.4	61
45	Calcium Phosphate/Calcium Oxalate Crystal Association in Urinary Stones: Implications for Heterogeneous Nucleation of Calcium Oxalate. Journal of Urology, 1997, 157, 376-383.	0.4	59
46	ldentification of Uronic-Acid-Rich Protein as Urinary Bikunin, the Light Chain of Inter-alpha-Inhibitor. FEBS Journal, 1996, 236, 984-990.	0.2	56
47	Identification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in the urine of healthy and stone forming subjects. Urological Research, 1998, 26, 201-207.	1.5	56
48	NADPH Oxidase as a Therapeutic Target for Oxalate Induced Injury in Kidneys. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-18.	4.0	56
49	Heterogeneous nucleation of calcium oxalate crystals in the presence of membrane vesicles. Journal of Crystal Growth, 1993, 134, 211-218.	1.5	54
50	Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease. Journal of Clinical Investigation, 2019, 129, 4506-4522.	8.2	54
51	Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. Journal of Urology, 2002, 168, 1173-81.	0.4	53
52	Diphenyleneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushite crystal-induced upregulation of MCP-1 in NRK 52E cells. Nephrology Dialysis Transplantation, 2005, 20, 870-878.	0.7	51
53	Calcium Oxalate Differentiates Human Monocytes Into Inflammatory M1 Macrophages. Frontiers in Immunology, 2018, 9, 1863.	4.8	51
54	Presence of lipids in urinary stones: Results of preliminary studies. Calcified Tissue International, 1988, 42, 91-96.	3.1	48

#	Article	IF	CITATIONS
55	EXPRESSION OF INTER- $\hat{1}$ ± INHIBITOR RELATED PROTEINS IN KIDNEYS AND URINE OF HYPEROXALURIC RATS. Journal of Urology, 2001, 165, 1687-1692.	0.4	47
56	In Vitro Precipitation of Calcium Oxalate in the Presence of Whole Matrix or Lipid Components of the Urinary Stones. Journal of Urology, 1988, 139, 418-422.	0.4	45
57	Antiurolithic activity of Origanum vulgare is mediated through multiple pathways. BMC Complementary and Alternative Medicine, 2011, 11, 96.	3.7	45
58	Magnesium Oxide Administration and Prevention of Calcium Oxalate Nephrolithiasis. Journal of Urology, 1993, 149, 412-416.	0.4	44
59	Experimental Induction of Calcium Oxalate Nephrolithiasis in Mice. Journal of Urology, 2010, 184, 1189-1196.	0.4	44
60	Studies on the in vitro and in vivo antiurolithic activity of Holarrhena antidysenterica. Urological Research, 2012, 40, 671-681.	1.5	44
61	Growth of calcium oxalate monohydrate at phospholipid Langmuir monolayers. Journal of Crystal Growth, 1998, 192, 243-249.	1.5	43
62	CHARACTERIZATION OF TAMM-HORSFALL PROTEIN IN A RAT NEPHROLITHIASIS MODEL. Journal of Urology, 2001, 166, 1492-1497.	0.4	42
63	Membrane-associated crystallization of calcium oxalatein vitro. Calcified Tissue International, 1990, 46, 116-120.	3.1	41
64	EXPRESSION OF BIKUNIN mRNA IN RENAL EPITHELIAL CELLS AFTER OXALATE EXPOSURE. Journal of Urology, 1999, 162, 1480-1486.	0.4	41
65	<i>Berberis vulgaris</i> root bark extract prevents hyperoxaluria induced urolithiasis in rats. Phytotherapy Research, 2010, 24, 1250-1255.	5.8	41
66	Aggregation and Dispersion Characteristics of Calcium Oxalate Monohydrate: Effect of Urinary Species. Journal of Colloid and Interface Science, 2002, 256, 168-174.	9.4	40
67	Oxalate ions and calcium oxalate crystalâ€induced upâ€regulation of osteopontin and monocyte chemoattractant proteinâ€1 in renal fibroblasts. BJU International, 2006, 98, 656-660.	2.5	40
68	Steatorrhea and Hyperoxaluria Occur after Gastric Bypass Surgery in Obese Rats Regardless of Dietary Fat or Oxalate. Journal of Urology, 2013, 190, 1102-1109.	0.4	40
69	Apatite Induced Renal Epithelial Injury: Insight Into the Pathogenesis of Kidney Stones. Journal of Urology, 2008, 180, 379-387.	0.4	39
70	The effect of calcium on calcium oxalate monohydrate crystal-induced renal epithelial injury. Urological Research, 2009, 37, 1-6.	1.5	39
71	Genetic basis of renal cellular dysfunction and the formation of kidney stones. Urological Research, 2009, 37, 169-180.	1.5	39
72	Osteogenic changes in kidneys of hyperoxaluric rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2000-2012.	3.8	39

#	Article	IF	CITATIONS
73	Investigative Urology: Deposition of Calcium Phosphate and Calcium Oxalate Crystals in the Kidneys. Journal of Urology, 1995, 153, 811-817.	0.4	36
74	Adhesion force between calcium oxalate monohydrate crystal and kidney epithelial cells and possible relevance for kidney stone formation. Journal of Colloid and Interface Science, 2006, 300, 131-140.	9.4	36
75	Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. American Journal of Physiology - Renal Physiology, 2008, 294, F1109-F1115.	2.7	36
76	Mechanism of formation of concentrically laminated spherules: implication to Randall's plaque and stone formation. Urological Research, 2009, 37, 11-17.	1.5	36
77	Tubular cell surface events during nephrolithiasis. Current Opinion in Urology, 1997, 7, 240-247.	1.8	35
78	Regulation of macromolecular modulators of urinary stone formation by reactive oxygen species: transcriptional study in an animal model of hyperoxaluria. American Journal of Physiology - Renal Physiology, 2014, 306, F1285-F1295.	2.7	35
79	Reactive oxygen species mediated calcium oxalate crystal-induced expression of MCP-1 in HK-2 cells. Urological Research, 2006, 34, 26-36.	1.5	34
80	Dietary Oxalate and Calcium Oxalate Nephrolithiasis. Journal of Urology, 2007, 178, 2191-2196.	0.4	34
81	Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals. Nephrology Dialysis Transplantation, 2011, 26, 1778-1785.	0.7	32
82	Apocynin-Treatment Reverses Hyperoxaluria Induced Changes in NADPH Oxidase System Expression in Rat Kidneys: A Transcriptional Study. PLoS ONE, 2012, 7, e47738.	2.5	32
83	Agar-embedded Urinary Stones: A Technique useful for Studying Microscopic Architecture. Journal of Urology, 1983, 130, 992-995.	0.4	30
84	Direct AFM measurements of adhesion forces between calcium oxalate monohydrate and kidney epithelial cells in the presence of Ca2+ and Mg2+ ions. Journal of Colloid and Interface Science, 2008, 325, 594-601.	9.4	30
85	CHANGES IN URINE MACROMOLECULAR COMPOSITION DURING PROCESSING. Journal of Urology, 2000, 164, 230-236.	0.4	29
86	Role of Lipids in Urinary Stones:Â Studies of Calcium Oxalate Precipitation at Phospholipid Langmuir Monolayers. Langmuir, 2006, 22, 2450-2456.	3.5	28
87	Pathogenesis of calcium oxalate urinary stone disease: species comparison of humans, dogs, and cats. Urolithiasis, 2017, 45, 329-336.	2.0	28
88	Oxalate-inducible AMBP gene and its regulatory mechanism in renal tubular epithelial cells. Biochemical Journal, 2005, 387, 609-616.	3.7	27
89	Ultrastructural Investigation of Crystal Deposits in Npt2a Knockout Mice: Are They Similar to Human Randall's Plaques?. Journal of Urology, 2011, 186, 1107-1113.	0.4	26
90	Crystal/cell interaction and nephrolithiasis. Archivio Italiano Di Urologia Andrologia, 2011, 83, 1-5.	0.8	26

#	Article	IF	CITATIONS
91	Urolithogenesis of Mixed Foreign Body Stones. Journal of Urology, 1987, 138, 1321-1328.	0.4	25
92	Role of inter-α-inhibitor and its related proteins in experimentally induced calcium oxalate urolithiasis. Localization of proteins and expression of bikunin gene in the rat kidney. Urological Research, 1999, 27, 63-67.	1.5	24
93	How do stones form? Is unification of theories on stone formation possible?. Archivos Espanoles De Urologia, 2017, 70, 12-27.	0.2	24
94	Calcium oxalate nephrolithiasis and expression of matrix GLA protein in the kidneys. World Journal of Urology, 2014, 32, 123-130.	2.2	23
95	Immunotherapy for stone disease. Current Opinion in Urology, 2020, 30, 183-189.	1.8	23
96	Histological aspects of the "fixed-particle―model of stone formation: animal studies. Urolithiasis, 2017, 45, 75-87.	2.0	21
97	Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: Inflammatory changes are mainly associated with crystal deposition. PLoS ONE, 2017, 12, e0185009.	2.5	21
98	Biochemical and quantitative analysis of Tamm Horsfall protein in rats. Urological Research, 1997, 25, 347-354.	1.5	20
99	Osteopontin knockdown in the kidneys of hyperoxaluric rats leads to reduction in renal calcium oxalate crystal deposition. Urolithiasis, 2014, 42, 195-202.	2.0	20
100	Involvement of renin–angiotensin–aldosterone system in calcium oxalate crystal induced activation of NADPH oxidase and renal cell injury. World Journal of Urology, 2016, 34, 89-95.	2.2	20
101	Mineralogical signatures of stone formation mechanisms. Urological Research, 2010, 38, 281-292.	1.5	19
102	Renal glomerular and tubular injury after gastric bypass in obese rats. Nutrition, 2012, 28, 76-80.	2.4	19
103	Exposure of Madin-Darby Canine Kidney (MDCK) Cells to Oxalate and Calcium Oxalate Crystals Activates Nicotinamide Adenine Dinucleotide Phosphate (NADPH)-Oxidase. Urology, 2014, 83, 510.e1-510.e7.	1.0	19
104	Development of a personalized diagnostic model for kidney stone disease tailored to acute care by integrating large clinical, demographics and laboratory data: the diagnostic acute care algorithm - kidney stones (DACA-KS). BMC Medical Informatics and Decision Making, 2018, 18, 72.	3.0	19
105	Protective role of heparin/heparan sulfate on oxalate-induced changes in cell morphology and intracellular Ca 2+. Urological Research, 2003, 31, 198-206.	1.5	18
106	Naturally produced crystals obtained from kidney stones are less injurious to renal tubular epithelial cells than synthetic crystals. BJU International, 2007, 100, 891-897.	2.5	18
107	Developmental morphology of calcium oxalate foreign body stones in rats. Calcified Tissue International, 1985, 37, 165-173.	3.1	17
108	Modulation of calcium oxalate dihydrate growth by phosphorylated osteopontin peptides. Journal of Structural Biology, 2018, 204, 131-144.	2.8	17

#	Article	IF	CITATIONS
109	Lipid Peroxidation in Ethylene Glycol Induced Hyperoxaluria and Calcium Oxalate Nephrolithiasis. Journal of Urology, 1997, , 1059-1063.	0.4	17
110	Role of Osteogenesis in the Formation of <scp>R</scp> andall's Plaques. Anatomical Record, 2016, 299, 5-7.	1.4	16
111	Oxalate induced expression of monocyte chemoattractant protein-1 (MCP-1) in HK-2 cells involves reactive oxygen species. Urological Research, 2005, 33, 440-447.	1.5	15
112	Biomimetic Randall's plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation. Urolithiasis, 2015, 43, 77-92.	2.0	15
113	Opportunities for future therapeutic interventions for hyperoxaluria: targeting oxidative stress. Expert Opinion on Therapeutic Targets, 2019, 23, 379-391.	3.4	15
114	Experimental induction of crystalluria in rats using mini-osmotic pumps. Urological Research, 1983, 11, 199-205.	1.5	14
115	Development of a two-stage model system to investigate the mineralization mechanisms involved in idiopathic stone formation: stage 2 in vivo studies of stone growth on biomimetic Randall's plaque. Urolithiasis, 2019, 47, 335-346.	2.0	14
116	Antiurolithic effects of medicinal plants: results of in vivo studies in rat models of calcium oxalate nephrolithiasis—a systematic review. Urolithiasis, 2021, 49, 95-122.	2.0	14
117	FREE RADICAL SCAVENGERS, CATALASE AND SUPEROXIDE DISMUTASE PROVIDE PROTECTION FROM OXALATE-ASSOCIATED INJURY TO LLC-PK1 AND MDCK CELLS. Journal of Urology, 2000, , 224-229.	0.4	14
118	Scanning electron microscopy, X-ray diffraction, and electron microprobe analysis of calcific deposits on intrauterine contraceptive devices. Human Pathology, 1985, 16, 732-738.	2.0	12
119	Role of inter-α-inhibitor and its related proteins in urolithiasis. Purification of an inter-α-inhibitor related protein from the bovine kidney. Urological Research, 1999, 27, 57-61.	1.5	12
120	Development of a two-stage in vitro model system to investigate the mineralization mechanisms involved in idiopathic stone formation: stage 1—biomimetic Randall's plaque using decellularized porcine kidneys. Urolithiasis, 2019, 47, 321-334.	2.0	9
121	Expression of Osteopontin in Rat Kidneys: Induction During Ethylene Glycol Induced Calcium Oxalate Nephrolithiasis. Journal of Urology, 2002, , 1173-1181.	0.4	7
122	Relevance of a Polymer-Induced Liquid-Precursor (PILP) Mineralization Process to Normal and Pathological Biomineralization. , 0, , 125-217.		6
123	Animal Models of Calcium Oxalate Kidney Stone Formation. , 2013, , 483-498.		6
124	NADPH oxidase: a therapeutic target for hyperoxaluria-induced oxidative stress – an update. Future Medicinal Chemistry, 2019, 11, 2975-2978.	2.3	6
125	Editorial: Immunity and Inflammatory Response in Kidney Stone Disease. Frontiers in Immunology, 2021, 12, 795559.	4.8	6
126	Experimentally induced hyperoxaluria in MCP-1 null mice. Urological Research, 2011, 39, 253-258.	1.5	5

#	Article	IF	CITATIONS
127	Foreword. Urolithiasis, 2015, 43, 1-3.	2.0	4
128	Inflammation and injury: what role do they play in the development of Randall's plaques and formation of calcium oxalate kidney stones?. Comptes Rendus Chimie, 2022, 25, 355-372.	0.5	4
129	The kidney sodium–phosphate co-transporter alters bone quality in an age and gender specific manner. Bone, 2013, 53, 546-553.	2.9	3
130	EXPRESSION OF INTER-?? INHIBITOR RELATED PROTEINS IN KIDNEYS AND URINE OF HYPEROXALURIC RATS. Journal of Urology, 2001, , 1687-1692.	0.4	3
131	Stone Research on the Bench: Where We Are and Where We Are Going. Journal of Endourology, 2002, 16, 413-416.	2.1	2
132	A Tribute to the Life and Accomplishments of Birdwell Finlayson. Journal of Urology, 2008, 179, 842-846.	0.4	2
133	EXPRESSION OF BIKUNIN mRNA IN RENAL EPITHELIAL CELLS AFTER OXALATE EXPOSURE. Journal of Urology, 1999, , 1480-1486.	0.4	2
134	Re: Increased Urinary Excretion of Renal Enzymes in Idiopathic Calcium Oxalate Nephrolithiasis by, B. Baggio, G. Gambaro, E. Ossi, S. Favaro and A. Borsatti, J. Urol., 129: 1161-1162, 1983. Journal of Urology, 1984, 131, 125-125.	0.4	1
135	1969 ULTRA-STRUCTURAL STUDY OF RENAL PAPILLARY CALCINOSIS IN TAMM-HORSFALL PROTEIN KNOCKOUT MICE: RELATION TO RANDALL'S PLAQUES IN HUMANS. Journal of Urology, 2010, 183, .	0.4	1
136	2083 DIFFERENTIAL GENE EXPRESSION IN RAT KIDNEYS IN RESPONSE TO OXALATE AND CALCIUM OXALATE CRYSTALS: A TRANSCRIPTIONAL STUDY. Journal of Urology, 2013, 189, .	0.4	1
137	Importance of Calcium-Based Scales inÂKidney Stone. , 2015, , 393-416.		1
138	TO035CALCIUM OXALATE CRYSTALS PROMOTE CYTOGENESIS AND AGGRAVATE POLYCYSTIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2017, 32, iii94-iii94.	0.7	1
139	Direct Observation of Calcium Oxalate Monohydrate Precipitation at Phospholipid Monolayers with Brewster Angle Microscopy. Materials Research Society Symposia Proceedings, 2003, 774, 591.	0.1	1
140	Renal Cellular Dysfunction/Damage and the Formation of Kidney Stones. , 2010, , 61-86.		1
141	Re: Dietary Oxalate Loads and Renal Oxalate Handling. Journal of Urology, 2006, 175, 1576-1576.	0.4	0
142	EFFECT OF CALCIUM ON CALCIUM OXALATE CRYSTAL INDUCED RENAL EPITHELIAL INJURY. Journal of Urology, 2008, 179, 508-508.	0.4	0
143	DIFFERNTIAL RENAL TISSUE PROTEIN PROFILING IN A MOUSE MODEL OF HYPERCALCIURIA: EFFECT OF HIGH OXALATE DIET. Journal of Urology, 2009, 181, 724-725.	0.4	0
144	RENAL HISTOLOGICAL CHANGES AFTER RYGB IN A DIET INDUCED OBESE RAT MODEL. Journal of Urology, 2009, 181, 721-721.	0.4	0

#	Article	IF	CITATIONS
145	HYPEROXALURIA IS REDUCED AND CRYSTAL DEPOSITION PREVENTED BY A HERBAL EXTRACT IN HYPEROXALURIC RATS. Journal of Urology, 2009, 181, 523-523.	0.4	0
146	1964 OF MICE AND MEN: MALE GENDER, HYPEROXALURIA AND HYPERCALCIURIA PROMOTE CALCIUM OXALATE STONE FORMATION IN MICE. Journal of Urology, 2010, 183, .	0.4	0
147	1972 RESOLUTION OF RENAL PAPILLARY INJURY AND RANDALL'S PLAQUE IN A RODENT MODEL. Journal of Urology, 2010, 183, .	0.4	Ο
148	2051 DEVELOPMENT OF INTERSTITIAL CALCIUM PHOSPHATE DEPOSITS IN SODIUM PHOSPHATE CO-TRANSPORTER (NPT2A) NULL MICE. Journal of Urology, 2011, 185, .	0.4	0
149	2151 FORMATION AND GROWTH OF RANDALL'S PLAQUES: AN ULTRASTRUCTURAL STUDY OF RENAL PAPILLAE FROM IDIOPATHIC STONE FORMERS. Journal of Urology, 2011, 185, .	0.4	0
150	2048 EFFECT OF APOCYNIN ON EXPRESSION OF KIDNEY INJURY MOLECULE-1 & CAOX CRYSTAL DEPOSITION IN HYPEROXALURIC RATS. Journal of Urology, 2011, 185, .	0.4	0
151	2114 INCREASED URINARY EXCRETION OF KIDNEY INJURY MOLECULE (KIM), OSTEOPONTIN (OPN), HYDROGEN PEROXIDE (HP), AND MONOCYTE CHEMOATTRACTANT PROTEIN-1 (MCP1), A GOOD INDICATOR OF RENAL CALCIUM OXALATE (CAOX) CRYSTALS DEPOSITION AND PERHAPS, OF STONE RECURRENCE. Journal of Urology. 2012, 187.	0.4	0
152	2121 GENOME WIDE ANALYSIS OF DIFFERENTIALLY EXPRESSED GENES IN THE KIDNEYS OF A RAT NEPHROLITHIASIS MODEL. Journal of Urology, 2012, 187, .	0.4	0
153	Editorial Comment. Urology, 2013, 82, 495.	1.0	0
154	2104 STEATORRHEA AND HYPEROXALURIA OCCUR AFTER RYGB IN DIO RATS REGARDLESS OF DIETARY FAT OR OXALATE. Journal of Urology, 2013, 189, .	0.4	0
155	2072 ROLE OF MATRIX GLA PROTEIN (MGP) IN STONE FORMATION, RESULTS OF EXPERIMENTAL STUDIES. Journal of Urology, 2013, 189, .	0.4	0
156	MP25-05 ACTIVATION OF INFLAMMASOME BY OXALATE AND CALCIUM OXALATE CRYSTALS IN AN ANIMAL MODEL. Journal of Urology, 2014, 191, .	0.4	0
157	MP25-12 HUMAN MACROPHAGES FACILITATE KIDNEY STONE CLEARANCES. Journal of Urology, 2014, 191, .	0.4	Ο
158	MP20-15 PRODUCTION OF CRYSTALLIZATION MODULATORS IS REGULATED BY REACTIVE OXYGEN SPECIES, TRANSCRIPTIONAL STUDY IN AN ANIMAL MODEL OF HYPEROXALURIA. Journal of Urology, 2014, 191, .	0.4	0
159	MP33-11 CALCIUM IS MORE EFFECTIVE THAN VITAMIN B6 AT REDUCING OXALATE EXCRETION IN A GASTRIC BYPASS MODEL OF HYPEROXALURIA. Journal of Urology, 2015, 193, .	0.4	Ο
160	MP33-09 HUMAN MONOCYTE-DERIVED MACROPHAGES ARE ABLE TO DESTROY KIDNEY STONES. Journal of Urology, 2015, 193, .	0.4	0
161	MP58-09 HYDROXYAPATITE INDUCES CALCIUM OXALATE TOLERANCE IN PRIMARY HUMAN MONOCYTES. Journal of Urology, 2016, 195, .	0.4	Ο
162	MP12-04 TWO-STAGE MODEL TO STUDY IDIOPATHIC CALCIUM OXALATE STONE FORMATION. Journal of Urology, 2017, 197, .	0.4	0

#	Article	IF	CITATIONS
163	MP12-13 A RAT MODEL TO STUDY THE ROLE OF GUT BACTERIA IN REGULATION OF URINARY CALCIUM. Journal of Urology, 2017, 197, .	0.4	0
164	MP12-18 CALCIUM OXALATE AND HYDROXYAPATITE HAVE OPPOSITE EFFECTS ON HUMAN MACROPHAGE DIFFERENTIATION. Journal of Urology, 2017, 197, .	0.4	0
165	933: Calcium Oxalate/Calcium Phosphate Association in Kidney Stones. Journal of Urology, 2007, 177, 309-309.	0.4	0
166	Modulators of Crystallization of Stone Salts. , 2007, , 175-219.		0