
Jana Machotova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9454488/publications.pdf Version: 2024-02-01

Ιλνα Μλαμοτουλ

#	Article	IF	CITATIONS
1	Water-Resistant Latex Coatings: Tuning of Properties by Polymerizable Surfactant, Covalent Crosslinking and Nanostructured ZnO Additive. Coatings, 2021, 11, 347.	2.6	16
2	Design of polymeric binders to improve the properties of magnesium phosphate cement. Construction and Building Materials, 2021, 290, 123202.	7.2	17
3	Effect of Cyclotriphosphazene-Based Curing Agents on the Flame Resistance of Epoxy Resins. Polymers, 2021, 13, 8.	4.5	10
4	Waterborne hygienic coatings based on self-crosslinking acrylic latex with embedded inorganic nanoparticles: a comparison of nanostructured ZnO and MgO as antibacterial additives. Progress in Organic Coatings, 2020, 147, 105704.	3.9	11
5	Environmentally Friendly Water-Based Self-Crosslinking Acrylate Dispersion Containing Magnesium Nanoparticles and Their Films Exhibiting Antimicrobial Properties. Coatings, 2020, 10, 340.	2.6	11
6	Waterborne Coating Binders Based on Self-Crosslinking Acrylic Latex with Embedded Inorganic Nanoparticles: A Comparison of Nanostructured ZnO and MgO as Crosslink Density Enhancing Agents. Coatings, 2020, 10, 339.	2.6	9
7	Ambient temperature self-crosslinking latices using low generation PAMAM dendrimers as inter-particle crosslinking agents. Progress in Organic Coatings, 2018, 119, 91-98.	3.9	12
8	High-performance one-pack ambient cross-linking latex binders containing low-generation PAMAM dendrimers and ZnO nanoparticles. Journal of Coatings Technology Research, 2018, 15, 1167-1179.	2.5	11
9	Water sensitivity of fluorine-containing polyacrylate latex coatings: Effects of crosslinking and ambient drying conditions. Progress in Organic Coatings, 2018, 120, 266-273.	3.9	36
10	Synthesis and Application of Hexaallylamino- <i>cyclo</i> -triphosphazene as Flame Retardant in Latex Coatings. Polymer-Plastics Technology and Engineering, 2017, 56, 563-571.	1.9	2
11	Property study of structured self-crosslinking acrylic latex binder: Effect of molar mass and particle design. Progress in Organic Coatings, 2017, 111, 258-266.	3.9	9
12	Fluorine containing selfâ€crosslinking acrylic latexes with reduced flammability and their application as polymer binders for heterogeneous cationâ€exchange membranes. Journal of Applied Polymer Science, 2017, 134, 45467.	2.6	7
13	Investigation of the effect of molar mass on coating properties of self-crosslinking latexes based on acrylic microgels. Journal of Adhesion Science and Technology, 2016, 30, 1095-1108.	2.6	1
14	Application of A4F-MALS for the Characterization of Polymers Prepared by Emulsion Polymerization: Comparison of the Molecular Structure of Styrene-Acrylate and Methyl Methacrylate-Acrylate Copolymers. Polymer-Plastics Technology and Engineering, 2016, 55, 1365-1372.	1.9	2
15	Self-crosslinking acrylic latexes with copolymerized flame retardant based on halogenophosphazene derivative. Progress in Organic Coatings, 2016, 101, 322-330.	3.9	10
16	Determination of molar mass of structured acrylic microgels: effect of molar mass on coating properties of self-crosslinking latexes. Journal of Polymer Research, 2016, 23, 1.	2.4	1
17	Characterization of Molecular Structure of Emulsion Acrylic Microgels: Exploring the Impact of Molar Mass on Coating Properties of Self-Cross-Linkable Latexes. Polymer-Plastics Technology and Engineering, 2016, 55, 1807-1818.	1.9	2
18	Electrospinning of Styrene–Ethyl Acrylate Emulsion Copolymers: Exploring the Impact of Polymer Polarity and Glass Transition Temperature on Fiber Formation and Hydrophobicity. Polymer-Plastics Technology and Engineering, 2016, 55, 423-431.	1.9	4

JANA ΜΑCΗΟΤΟVA

#	Article	IF	CITATIONS
19	Effect of molar mass on film-forming properties of self-crosslinking latexes based on structured acrylic microgels. Progress in Organic Coatings, 2016, 92, 23-28.	3.9	13
20	Epoxy–Cyanate Ester Compositions as Matrixes for Tagging of Explosives. Advances in Polymer Technology, 2014, 33, .	1.7	2
21	Rubber Modified Epoxy-Cyanate Ester Composites as Matrices for Tagging of Explosives. Polymer-Plastics Technology and Engineering, 2014, 53, 1205-1214.	1.9	1
22	Characterization of molecular structure of acrylic copolymers prepared via emulsion polymerization using A4Fâ€MALS technique. Journal of Applied Polymer Science, 2014, 131, .	2.6	27
23	Some properties of composites based on vulcanized liquid polybutadiene matrix and inorganic particulate fillers. Journal of Applied Polymer Science, 2013, 128, 2277-2282.	2.6	4
24	Sulphur-vulcanized polybutadiene as a matrix in glass fiber-reinforced composite materials. Journal of Applied Polymer Science, 2011, 119, 3446-3452.	2.6	3
25	Functionalised Microgels for Acrylic Coatings. Macromolecular Symposia, 2009, 281, 197-205.	0.7	2
26	Swelling of acrylic microgels in aliphatic ketones. Progress in Organic Coatings, 2008, 62, 71-78.	3.9	1