Mikael Thyrel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9454483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of design of experiments (DoE) for optimised production of micro- and mesoporous Norway spruce bark activated carbons. Biomass Conversion and Biorefinery, 2023, 13, 10113-10131.	2.9	20
2	Process Parameters Optimization, Characterization, and Application of KOH-Activated Norway Spruce Bark Graphitic Biochars for Efficient Azo Dye Adsorption. Molecules, 2022, 27, 456.	1.7	59
3	Facile Synthesis of Sustainable Biomass-Derived Porous Biochars as Promising Electrode Materials for High-Performance Supercapacitor Applications. Nanomaterials, 2022, 12, 866.	1.9	14
4	A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2, and KOH on physicochemical properties and acetaminophen adsorption performance of biobased porous materials from tree bark residues. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128626.	2.3	59
5	Phase transitions involving Ca – The most abundant ash forming element – In thermal treatment of lignocellulosic biomass. Fuel, 2021, 285, 119054.	3.4	8
6	Using the macromolecular composition to predict process settings that give high pellet durability in ring-die biomass pellet production. Fuel, 2021, 283, 119267.	3.4	4
7	A Short Review on the Electrochemical Performance of Hierarchical and Nitrogen-Doped Activated Biocarbon-Based Electrodes for Supercapacitors. Nanomaterials, 2021, 11, 424.	1.9	47
8	Fate of phosphorus and potassium in single-pellet thermal conversion of forest residues with a focus on the char composition. Biomass and Bioenergy, 2021, 150, 106124.	2.9	10
9	Flexible supercapacitors of biomass-based activated carbon-polypyrrole on eggshell membranes. Journal of Environmental Chemical Engineering, 2021, 9, 106155.	3.3	27
10	Morphological characterisation of ash particles from co-combustion of sewage sludge and wheat straw with X-ray microtomography. Waste Management, 2021, 135, 30-39.	3.7	7
11	Sustainable Biomass Activated Carbons as Electrodes for Battery and Supercapacitors—A Mini-Review. Nanomaterials, 2020, 10, 1398.	1.9	76
12	Energy smart hot-air pasteurisation as effective as energy intense autoclaving for fungal preprocessing of lignocellulose feedstock for bioethanol fuel production. Renewable Energy, 2020, 155, 237-247.	4.3	14
13	Does Mechanical Screening of Contaminated Forest Fuels Improve Ash Chemistry for Thermal Conversion?. Energy & Fuels, 2020, 34, 16294-16301.	2.5	2
14	Time-Resolved Study of Silicate Slag Formation During Combustion of Wheat Straw Pellets. Energy & Fuels, 2019, 33, 2308-2318.	2.5	19
15	A method for differentiating between exogenous and naturally embedded ash in bio-based feedstock by combining ED-XRF and NIR spectroscopy. Biomass and Bioenergy, 2019, 122, 84-89.	2.9	8
16	Reducing Volatile Organic Compound Off-Gassing during the Production of Pelletized Steam-Exploded Bark: Impact of Storage Time and Controlled Ventilation. Energy & Fuels, 2018, 32, 5181-5186.	2.5	3
17	Biomass pellet combustion: Cavities and ash formation characterized by synchrotron X-ray micro-tomography. Fuel Processing Technology, 2018, 176, 211-220.	3.7	31
18	Combustion characteristics of straw stored with CaCO3 in bubbling fluidized bed using quartz and olivine as bed materials. Applied Energy, 2018, 212, 1400-1408.	5.1	23

MIKAEL THYREL

#	Article	IF	CITATIONS
19	VOC off-gassing from pelletized steam exploded softwood bark: Emissions at different industrial process steps. Fuel Processing Technology, 2018, 171, 70-77.	3.7	15
20	Characterization of fast pyrolysis bio-oil properties by near-infrared spectroscopic data. Journal of Analytical and Applied Pyrolysis, 2018, 133, 9-15.	2.6	12
21	Nanomapping and speciation of C and Ca in thermally treated lignocellulosic cell walls using scanning transmission X-ray microscopy and K-edge XANES. Fuel, 2016, 167, 149-157.	3.4	12
22	Combustion and Slagging Behavior of Biomass Pellets Using a Burner Cup Developed for Ash-Rich Fuels. Energy & Fuels, 2014, 28, 1103-1110.	2.5	18
23	Near Infrared Image Analysis for Online Identification and Separation of Wood Chips with Elevated Levels of Extractives. Journal of Near Infrared Spectroscopy, 2012, 20, 591-599.	0.8	24
24	Moisture content and storage time influence the binding mechanisms in biofuel wood pellets. Applied Energy, 2012, 99, 109-115.	5.1	100
25	Temperature controlled feed layer formation in biofuel pellet production. Fuel, 2012, 94, 81-85.	3.4	15
26	Industrial scale biofuel pellet production from blends of unbarked softwood and hardwood stems—the effects of raw material composition and moisture content on pellet quality. Fuel Processing Technology, 2012, 95, 73-77.	3.7	31
27	Effect of biomaterial characteristics on pelletizing properties and biofuel pellet quality. Fuel Processing Technology, 2009, 90, 1129-1134.	3.7	90
28	High quality biofuel pellet production from pre-compacted low density raw materials. Bioresource Technology, 2008, 99, 7176-7182.	4.8	121
29	Slagging Characteristics during Combustion of Corn Stovers with and without Kaolin and Calcite. Energy & Amp: Fuels, 2008, 22, 3465-3470.	2.5	115