
Wenchuan Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9454387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward Excellent Tribological Performance as Oil-Based Lubricant Additive: Particular Tribological Behavior of Fluorinated Graphene. ACS Applied Materials & Interfaces, 2018, 10, 28828-28838.	8.0	85
2	Towards enhanced tribological performance as water-based lubricant additive: Selective fluorination of graphene oxide at mild temperature. Journal of Colloid and Interface Science, 2018, 531, 138-147.	9.4	56
3	Ester Crosslinking Enhanced Hydrophilic Cellulose Nanofibrils Aerogel. ACS Sustainable Chemistry and Engineering, 2018, 6, 11979-11988.	6.7	51
4	Effects of the oxygenic groups on the mechanism of fluorination of graphene oxide and its structure. Physical Chemistry Chemical Physics, 2017, 19, 5504-5512.	2.8	47
5	Aligned fluorinated single-walled carbon nanotubes as a transmission channel towards attenuation of broadband electromagnetic waves. Journal of Materials Chemistry C, 2018, 6, 9399-9409.	5.5	43
6	Chemical reactivity of C–F bonds attached to graphene with diamines depending on their nature and location. Physical Chemistry Chemical Physics, 2016, 18, 17495-17505.	2.8	42
7	Characterization of the thermal/thermal oxidative stability of fluorinated graphene with various structures. Physical Chemistry Chemical Physics, 2017, 19, 19442-19451.	2.8	37
8	Excellent Microwave Absorbing Property of Multiwalled Carbon Nanotubes with Skin–Core Heterostructure Formed by Outer Dominated Fluorination. Journal of Physical Chemistry C, 2018, 122, 6357-6367.	3.1	37
9	Dependence of the fluorination intercalation of graphene toward high-quality fluorinated graphene formation. Chemical Science, 2019, 10, 5546-5555.	7.4	33
10	Defluorination and covalent grafting of fluorinated graphene with TEMPO in a radical mechanism. Physical Chemistry Chemical Physics, 2017, 19, 24076-24081.	2.8	28
11	Towards efficient microwave absorption: intrinsic heterostructure of fluorinated SWCNTs. Journal of Materials Chemistry C, 2017, 5, 11847-11855.	5.5	26
12	The particular phase transformation during graphene fluorination process. Carbon, 2018, 132, 271-279.	10.3	26
13	Skin–core structured fluorinated MWCNTs: a nanofiller towards a broadband dielectric material with a high dielectric constant and low dielectric loss. Journal of Materials Chemistry C, 2018, 6, 2370-2378.	5.5	25
14	Radical chain reaction mechanism of graphene fluorination. Carbon, 2018, 137, 451-457.	10.3	22
15	The Friedel–Crafts reaction of fluorinated graphene for high-yield arylation of graphene. Chemical Communications, 2018, 54, 10168-10171.	4.1	22
16	Simultaneously enhancing of wear-resistant and mechanical properties of polyurethane composite based on the selective interaction of fluorinated graphene derivatives. Composites Part B: Engineering, 2019, 169, 200-208.	12.0	21
17	Radical mechanism of a nucleophilic reaction depending on a two-dimensional structure. Physical Chemistry Chemical Physics, 2018, 20, 489-497.	2.8	19
18	Toward high-efficiency photoluminescence emission by fluorination of graphene oxide: Investigations from excitation to emission evolution. Carbon, 2020, 165, 386-394.	10.3	17

Wenchuan Lai

#	Article	IF	CITATIONS
19	In Situ Radical Polymerization and Grafting Reaction Simultaneously Initiated by Fluorinated Graphene. Langmuir, 2019, 35, 6610-6619.	3.5	14
20	Radical Mechanism for the Reduction of Graphene Derivatives Initiated by Electron-Transfer Reactions. Journal of Physical Chemistry C, 2018, 122, 8473-8479.	3.1	11
21	Nitrogen-Doping Chemical Behavior of Graphene Materials with Assistance of Defluorination. Journal of Physical Chemistry C, 2019, 123, 584-592.	3.1	9
22	Suzuki–Miyaura reaction of C–F bonds in fluorographene. Chemical Communications, 2021, 57, 351-354.	4.1	8
23	Multiple Modification of Titanium Dioxide to Enhance Its Photocatalytic Performance. ChemistrySelect, 2021, 6, 39-46.	1.5	3
24	Crystallization of silica promoted by residual hydrogen bonding interactions at high temperature. Physical Chemistry Chemical Physics, 2018, 20, 12827-12834.	2.8	2
25	The adsorption of aromatic macromolecules on graphene with entropy-tailored behavior and its utilization in exfoliating graphite. Journal of Colloid and Interface Science, 2021, 599, 12-22.	9.4	2