LuÃ-s D Carlos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9454168/publications.pdf

Version: 2024-02-01

542 papers 27,882 citations

81 h-index 9103 144 g-index

588 all docs 588 docs citations

588 times ranked 17159 citing authors

#	Article	IF	CITATIONS
1	Luminescent multifunctional lanthanides-based metal–organic frameworks. Chemical Society Reviews, 2011, 40, 926-940.	38.1	1,459
2	Thermometry at the nanoscale. Nanoscale, 2012, 4, 4799.	5.6	1,258
3	Lanthanideâ€Containing Lightâ€Emitting Organic–Inorganic Hybrids: A Bet on the Future. Advanced Materials, 2009, 21, 509-534.	21.0	850
4	Lanthanideâ€Based Thermometers: At the Cuttingâ€Edge of Luminescence Thermometry. Advanced Optical Materials, 2019, 7, 1801239.	7.3	631
5	Progress on lanthanide-based organic–inorganic hybrid phosphors. Chemical Society Reviews, 2011, 40, 536-549.	38.1	527
6	A Luminescent Molecular Thermometer for Longâ€Term Absolute Temperature Measurements at the Nanoscale. Advanced Materials, 2010, 22, 4499-4504.	21.0	405
7	Lanthanide Organic Framework Luminescent Thermometers. Chemistry - A European Journal, 2016, 22, 14782-14795.	3.3	404
8	Metal–Organic Nanoporous Structures with Anisotropic Photoluminescence and Magnetic Properties and Their Use as Sensors. Angewandte Chemie - International Edition, 2008, 47, 1080-1083.	13.8	378
9	Ratiometric Nanothermometer Based on an Emissive Ln ³⁺ -Organic Framework. ACS Nano, 2013, 7, 7213-7218.	14.6	335
10	A Miniaturized Linear pH Sensor Based on a Highly Photoluminescent Selfâ€Assembled Europium(III) Metal–Organic Framework. Angewandte Chemie - International Edition, 2009, 48, 6476-6479.	13.8	314
11	Full-Color Phosphors from Europium(III)-Based Organosilicates. Advanced Materials, 2000, 12, 594-598.	21.0	313
12	Lanthanides in Luminescent Thermometry. Fundamental Theories of Physics, 2016, 49, 339-427.	0.3	304
13	Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry. Nature Nanotechnology, 2016, 11, 851-856.	31.5	292
14	Lanthanide-based luminescent molecular thermometers. New Journal of Chemistry, 2011, 35, 1177.	2.8	266
15	Unveiling in Vivo Subcutaneous Thermal Dynamics by Infrared Luminescent Nanothermometers. Nano Letters, 2016, 16, 1695-1703.	9.1	265
16	Allâ€Inâ€One Optical Heaterâ€Thermometer Nanoplatform Operative From 300 to 2000 K Based on Er ³⁺ Emission and Blackbody Radiation. Advanced Materials, 2013, 25, 4868-4874.	21.0	264
17	Solâ^'Gel Derived Urea Cross-Linked Organically Modified Silicates. 2. Blue-Light Emission. Chemistry of Materials, 1999, 11, 581-588.	6.7	254
18	Lanthanide–Organic Framework Nanothermometers Prepared by Sprayâ€Drying. Advanced Functional Materials, 2015, 25, 2824-2830.	14.9	252

#	Article	IF	Citations
19	Standardizing luminescence nanothermometry for biomedical applications. Nanoscale, 2020, 12, 14405-14421.	5.6	241
20	White-Light Emission of Amine-Functionalized Organic/Inorganic Hybrids:  Emitting Centers and Recombination Mechanisms. Journal of Physical Chemistry B, 2004, 108, 14924-14932.	2.6	234
21	Novel Lanthanide Luminescent Materials Based on Complexes of 3-Hydroxypicolinic Acid and Silica Nanoparticles. Chemistry of Materials, 2003, 15, 100-108.	6.7	227
22	Recent advances in luminescent lanthanide based Single-Molecule Magnets. Coordination Chemistry Reviews, 2018, 363, 57-70.	18.8	226
23	A Highâ€Temperature Molecular Ferroelectric Zn/Dy Complex Exhibiting Singleâ€Ionâ€Magnet Behavior and Lanthanide Luminescence. Angewandte Chemie - International Edition, 2015, 54, 2236-2240.	13.8	220
24	Boosting the sensitivity of Nd ³⁺ -based luminescent nanothermometers. Nanoscale, 2015, 7, 17261-17267.	5.6	213
25	Optical Properties of Hybrid Organicâ€Inorganic Materials and their Applications. Advanced Functional Materials, 2016, 26, 6506-6544.	14.9	207
26	Solâ^'Gel Derived Urea Cross-Linked Organically Modified Silicates. 1. Room Temperature Mid-Infrared Spectra. Chemistry of Materials, 1999, 11, 569-580.	6.7	202
27	A theoretical interpretation of the abnormal 5D0â†'7F4 intensity based on the Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate. Journal of Luminescence, 2006, 121, 561-567.	3.1	197
28	Visible‣ight Excited Luminescent Thermometer Based on Single Lanthanide Organic Frameworks. Advanced Functional Materials, 2016, 26, 8677-8684.	14.9	188
29	Upconverting Nanoparticles Working As Primary Thermometers In Different Media. Journal of Physical Chemistry C, 2017, 121, 13962-13968.	3.1	181
30	Energy-Transfer Mechanisms and Emission Quantum Yields In Eu3+-Based Siloxane-Poly(oxyethylene) Nanohybrids. Chemistry of Materials, 2001, 13, 2991-2998.	6.7	178
31	Highly Luminescent Tris (\hat{l}^2 -diketonate) europium (III) Complexes Immobilized in a Functionalized Mesoporous Silica. Chemistry of Materials, 2005, 17, 5077-5084.	6.7	172
32	A bifunctional luminescent single-ion magnet: towards correlation between luminescence studies and magnetic slow relaxation processes. Chemical Communications, 2012, 48, 9974.	4.1	171
33	Highly Photostable Luminescent Poly(ε-caprolactone)siloxane Biohybrids Doped with Europium Complexes. Chemistry of Materials, 2007, 19, 3892-3901.	6.7	164
34	Widening the Temperature Range of Luminescent Thermometers through the Intra―and Interconfigurational Transitions of Pr ³⁺ . Advanced Optical Materials, 2018, 6, 1701318.	7.3	161
35	Interconvertable Modular Framework and Layered Lanthanide(III)-Etidronic Acid Coordination Polymers. Journal of the American Chemical Society, 2008, 130, 150-167.	13.7	153
36	Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials. Journal of Materials Chemistry A, 2014, 2, 5580-5596.	10.3	150

#	Article	IF	CITATIONS
37	Full-Color Phosphors from Amine-Functionalized Crosslinked Hybrids Lacking Metal Activator Ions. Advanced Functional Materials, 2001, 11, 111-115.	14.9	148
38	Lanthanide-doped upconversion nanoparticles. Physics Today, 2015, 68, 38-44.	0.3	142
39	Fine Tuning of the Relaxometry of \hat{I}^3 -Fe ₂ O ₃ @SiO ₂ Nanoparticles by Tweaking the Silica Coating Thickness. ACS Nano, 2010, 4, 5339-5349.	14.6	141
40	Photoluminescent Thermometer Based on a Phase-Transition Lanthanide Silicate with Unusual Structural Disorder. Journal of the American Chemical Society, 2015, 137, 3051-3058.	13.7	141
41	Optically Functional Di-Urethanesil Nanohybrids Containing Eu3+ Ions. Chemistry of Materials, 2004, 16, 2530-2543.	6.7	140
42	Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles. Nanoscale, 2018, 10, 6602-6610.	5.6	139
43	Highly-sensitive Eu ³⁺ ratiometric thermometers based on excited state absorption with predictable calibration. Nanoscale, 2016, 8, 5327-5333.	5.6	136
44	Joining Time-Resolved Thermometry and Magnetic-Induced Heating in a Single Nanoparticle Unveils Intriguing Thermal Properties. ACS Nano, 2015, 9, 3134-3142.	14.6	135
45	Luminescent and Magnetic Cyano-Bridged Coordination Polymers Containing 4dâ^'4f lons: Toward Multifunctional Materials. Inorganic Chemistry, 2009, 48, 5983-5995.	4.0	134
46	Excitation of Magnetic Dipole Transitions at Optical Frequencies. Physical Review Letters, 2015, 114, 163903.	7.8	130
47	A Luminescent and Magnetic Cyano-Bridged Tb ³⁺ â^'Mo ⁵⁺ Coordination Polymer:  toward Multifunctional Materials. Inorganic Chemistry, 2008, 47, 775-777.	4.0	128
48	Spectroscopic Study of a UV-Photostable Organic-Inorganic Hybrids Incorporating an Eu3+ \hat{l}^2 -Diketonate Complex. ChemPhysChem, 2006, 7, 735-746.	2.1	127
49	Overlap polarizability of a chemical bond: a scale of covalency and application to lanthanide compounds. Chemical Physics, 2002, 282, 21-30.	1.9	125
50	Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chemistry, 2011, 13, 3173.	9.0	124
51	Functional nanostructured chitosan–siloxane hybrids. Journal of Materials Chemistry, 2005, 15, 3952.	6.7	123
52	Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF). Angewandte Chemie - International Edition, 2020, 59, 1932-1940.	13.8	120
53	White light emission of Eu3+-based hybrid xerogels. Physical Review B, 1999, 60, 10042-10053.	3.2	117
54	Room temperature magnetoelectric coupling in a molecular ferroelectric ytterbium(III) complex. Science, 2020, 367, 671-676.	12.6	114

#	Article	IF	CITATIONS
55	Photoluminescent 3D Lanthanideâ 'Organic Frameworks with 2,5-Pyridinedicarboxylic and 1,4-Phenylenediacetic Acids. Crystal Growth and Design, 2008, 8, 2505-2516.	3.0	112
56	Photoluminescent Layered Lanthanide Silicates. Journal of the American Chemical Society, 2004, 126, 10410-10417.	13.7	107
57	Optical Fiber Relative Humidity Sensor Based on a FBG with a Di-Ureasil Coating. Sensors, 2012, 12, 8847-8860.	3.8	105
58	Breakdown into nanoscale of graphene oxide: Confined hot spot atomic reduction and fragmentation. Scientific Reports, 2014, 4, 6735.	3.3	105
59	Novel Microporous Europium and Terbium Silicates. Journal of the American Chemical Society, 2001, 123, 5735-5742.	13.7	103
60	Nanoscopic Photoluminescence Memory as a Fingerprint of Complexity in Self-Assembled Alkyl/Siloxane Hybrids. Advanced Materials, 2007, 19, 341-348.	21.0	101
61	Photoluminescence and Quantum Yields of Urea and Urethane Cross-Linked Nanohybrids Derived from Carboxylic Acid Solvolysis. Chemistry of Materials, 2004, 16, 1507-1516.	6.7	100
62	Highly luminescent europium(III) complexes with naphtoiltrifluoroacetone and dimethyl sulphoxide. Molecular Physics, 2003, 101, 1037-1045.	1.7	98
63	Photo–Click Chemistry to Design Highly Efficient Lanthanide β-Diketonate Complexes Stable under UV Irradiation. Chemistry of Materials, 2013, 25, 586-598.	6.7	96
64	Thermal Properties of Lipid Bilayers Determined Using Upconversion Nanothermometry. Advanced Functional Materials, 2019, 29, 1905474.	14.9	96
65	Engineering highly efficient Eu(iii)-based tri-ureasil hybrids toward luminescent solar concentrators. Journal of Materials Chemistry A, 2013, 1, 7339.	10.3	95
66	Photoluminescent Lanthanide-Organic Bilayer Networks with 2,3-Pyrazinedicarboxylate and Oxalate. Inorganic Chemistry, 2010, 49, 3428-3440.	4.0	94
67	Emission spectra and local symmetry of theEu3+ion in polymer electrolytes. Physical Review B, 1994, 49, 11721-11728.	3.2	93
68	Photoluminescence and lattice location of Eu and Pr implanted GaN samples. Physica B: Condensed Matter, 2001, 308-310, 22-25.	2.7	91
69	Multi-functional rare-earth hybrid layered networks: photoluminescence and catalysis studies. Journal of Materials Chemistry, 2009, 19, 2618.	6.7	90
70	Intensities of 4f-4f transitions in glass materials. Quimica Nova, 2003, 26, 889-895.	0.3	89
71	Immobilization of Lanthanide Ions in a Pillared Layered Double Hydroxide. Chemistry of Materials, 2005, 17, 5803-5809.	6.7	89
72	Engineering of Mixed Eu ³⁺ /Tb ³⁺ Metalâ€Organic Frameworks Luminescent Thermometers with Tunable Sensitivity. Advanced Optical Materials, 2021, 9, 2001938.	7.3	89

#	Article	IF	CITATIONS
73	Relevance of magnetic moment distribution and scaling law methods to study the magnetic behavior of antiferromagnetic nanoparticles: Application to ferritin. Physical Review B, 2005, 71, .	3.2	87
74	Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids. Nanoscale, 2013, 5, 7572.	5.6	87
75	A cryogenic luminescent ratiometric thermometer based on a lanthanide phosphonate dimer. Journal of Materials Chemistry C, 2015, 3, 8480-8484.	5.5	87
76	Structure–photoluminescence relationship in Eu(iii) β-diketonate-based organic–inorganic hybrids. Influence of the synthesis method: carboxylic acid solvolysis versus conventional hydrolysis. Journal of Materials Chemistry, 2005, 15, 3117.	6.7	86
77	Structural and Photoluminescence Studies of a Europium(III) Tetrakis(\hat{l}^2 -diketonate) Complex with Tetrabutylammonium, Imidazolium, Pyridinium and Silica-Supported Imidazolium Counterions. Inorganic Chemistry, 2009, 48, 4882-4895.	4.0	86
78	A novel class of luminescent polymers obtained by the sol–gel approach. Journal of Alloys and Compounds, 1998, 275-277, 21-26.	5.5	85
79	Energy Transfer Mechanisms in Organicâ^'Inorganic Hybrids Incorporating Europium(III):  A Quantitative Assessment by Light Emission Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 17627-17634.	3.1	84
80	Coordination of Eu3+lons in Siliceous Nanohybrids Containing Short Polyether Chains and Bridging Urea Cross-links. Journal of Physical Chemistry B, 2001, 105, 3378-3386.	2.6	83
81	A layered erbium phosphonate in pseudo-D5h symmetry exhibiting field-tunable magnetic relaxation and optical correlation. Chemical Communications, 2014, 50, 7621.	4.1	83
82	Modulating the Photoluminescence of Bridged Silsesquioxanes Incorporating Eu ³⁺ -Complexed <i>n</i> , <i>n</i>)a \in 2-Diureido-2,2â \in 2-Dipyridine Isomers: Application for Luminescent Solar Concentrators. Chemistry of Materials, 2011, 23, 4773-4782.	6.7	82
83	Microporous materials containing lanthanide metals. Current Opinion in Solid State and Materials Science, 2003, 7, 199-205.	11.5	81
84	Investigation of europium(III) and gadolinium(III) complexes with naphthoyltrifluoroacetone and bidentate heterocyclic amines. Journal of Luminescence, 2005, 113, 50-63.	3.1	78
85	Incorporation of luminescent lanthanide complex inside the channels of organically modified mesoporous silica via template-ion exchange method. New Journal of Chemistry, 2005, 29, 1351.	2.8	78
86	Eu ³⁺ -Based Bridged Silsesquioxanes for Transparent Luminescent Solar Concentrators. ACS Applied Materials & Distriction (2015), 7, 8770-8778.	8.0	78
87	Real-Time Intracellular Temperature Imaging Using Lanthanide-Bearing Polymeric Micelles. Nano Letters, 2020, 20, 6466-6472.	9.1	78
88	Synthesis, characterization and optical studies on lanthanide-doped CdS quantum dots: new insights on CdS → lanthanide energy transfer mechanisms. Journal of Materials Chemistry, 2011, 21, 1162-1170.	6.7	77
89	Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks. Optical Materials, 2010, 32, 1397-1409.	3.6	76
90	Lanthanide-Based Lamellar Nanohybrids:Â Synthesis, Structural Characterization, and Optical Properties. Chemistry of Materials, 2006, 18, 4493-4499.	6.7	74

#	Article	IF	CITATIONS
91	White OLED based on a temperature sensitive Eu3+/Tb3+ \hat{l}^2 -diketonate complex. Organic Electronics, 2014, 15, 798-808.	2.6	74
92	High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics. Solar Energy Materials and Solar Cells, 2015, 138, 51-57.	6.2	74
93	Luminescence Thermometry on the Route of the Mobileâ€Based Internet of Things (IoT): How Smart QR Codes Make It Real. Advanced Science, 2019, 6, 1900950.	11.2	74
94	Novel Microporous Lanthanide Silicates with Tobermorite-Like Structure. Journal of the American Chemical Society, 2003, 125, 14573-14579.	13.7	73
95	Ag ₂ S Nanoheaters with Multiparameter Sensing for Reliable Thermal Feedback during In Vivo Tumor Therapy. Advanced Functional Materials, 2020, 30, 2002730.	14.9	73
96	A covalent fraction model for lanthanide compounds. Chemical Physics Letters, 2005, 415, 238-242.	2.6	71
97	Energy Transfer and Emission Quantum Yields of Organicâ [^] Inorganic Hybrids Lacking Metal Activator Centers. Journal of Physical Chemistry C, 2007, 111, 3275-3284.	3.1	70
98	Electrochromic Switch Devices Mixing Small―and Largeâ€Sized Upconverting Nanocrystals. Advanced Functional Materials, 2019, 29, 1807758.	14.9	69
99	Photoluminescent Lanthanideâ^'Organic 2D Networks:  A Combined Synchrotron Powder X-ray Diffraction and Solid-State NMR Study. Chemistry of Materials, 2007, 19, 3527-3538.	6.7	67
100	Bandgap Engineering and Excitation Energy Alteration to Manage Luminescence Thermometer Performance. The Case of Sr ₂ (Ge,Si)O ₄ :Pr ³⁺ . Advanced Optical Materials, 2019, 7, 1901102.	7.3	67
101	Synthesis, Characterization, and Luminescence of \hat{l}^2 -Cyclodextrin Inclusion Compounds Containing Europium(III) and Gadolinium(III) Tris(\hat{l}^2 -diketonates). Journal of Physical Chemistry B, 2002, 106, 11430-11437.	2.6	65
102	Enhanced emission from Eu(III) β-diketone complex combined with ether-type oxygen atoms of di-ureasil organic–inorganic hybrids. Journal of Luminescence, 2003, 104, 93-101.	3.1	65
103	Relaxometric Studies of \hat{l}^3 -Fe ₂ O ₃ @SiO ₂ Core Shell Nanoparticles: When the Coating Matters. Journal of Physical Chemistry C, 2012, 116, 2285-2291.	3.1	65
104	Excimer Formation in a Terbium Metal–Organic Framework Assists Luminescence Thermometry. Chemistry of Materials, 2017, 29, 9547-9554.	6.7	65
105	High-Performance Near-Infrared Luminescent Solar Concentrators. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12540-12546.	8.0	64
106	Series of Metal Organic Frameworks Assembled from Ln(III), Na(I), and Chiral Flexible-Achiral Rigid Dicarboxylates Exhibiting Tunable UV–vis–IR Light Emission. Inorganic Chemistry, 2012, 51, 1703-1716.	4.0	63
107	Tuning the emission colour in mixed lanthanide microporous silicates: energy transfer, composition and chromaticity. Journal of Materials Chemistry, 2008, 18, 1100.	6.7	62
108	Effects of Phonon Confinement on Anomalous Thermalization, Energy Transfer, and Upconversion in Ln ³⁺ â€Doped Gd ₂ O ₃ Nanotubes. Advanced Functional Materials, 2010, 20, 624-634.	14.9	62

#	Article	IF	CITATIONS
109	Emission-Decay Curves, Energy-Transfer and Effective-Refractive Index in Gd ₂ O ₃ :Eu ³⁺ Nanorods. Journal of Physical Chemistry C, 2011, 115, 15297-15303.	3.1	62
110	Sol-gel processing and structural study of europium-doped hybrid materials. Journal of Materials Chemistry, 1999, 9, 1735-1740.	6.7	61
111	Photoluminescence of Eu(iii)-doped lamellar bridged silsesquioxanes self-templated through a hydrogen bonding array. Journal of Materials Chemistry, 2008, 18, 4172.	6.7	61
112	New phosphors based on Eu3+-doped microporous titanosilicates. Journal of Luminescence, 2000, 87-89, 1083-1086.	3.1	60
113	Calix[4]azacrowns as Novel Molecular Scaffolds for the Generation of Visible and Near-Infrared Lanthanide Luminescence. Inorganic Chemistry, 2006, 45, 2652-2660.	4.0	60
114	Novel Near-Infrared Luminescent Hybrid Materials Covalently Linking with Lanthanide [Nd(III), Er(III), Yb(III), and Sm(III)] Complexes via a Primary β-Diketone Ligand: Synthesis and Photophysical Studies. Journal of Physical Chemistry C, 2009, 113, 12538-12545.	3.1	60
115	Ligand-Assisted Rational Design and Supramolecular Tectonics toward Highly Luminescent Eu ³⁺ -Containing Organicâ ^{**} Inorganic Hybrids. Chemistry of Materials, 2009, 21, 5099-5111.	6.7	58
116	Luminescent Polyoxotungstoeuropate Anion-Pillared Layered Double Hydroxides. European Journal of Inorganic Chemistry, 2006, 2006, 726-734.	2.0	56
117	Lanthanopolyoxotungstates in silica nanoparticles: multi-wavelength photoluminescent core/shell materials. Journal of Materials Chemistry, 2010, 20, 3313.	6.7	56
118	Thermometry at the nanoscale using lanthanide-containing organic–inorganic hybrid materials. Journal of Luminescence, 2013, 133, 230-232.	3.1	56
119	Lanthanide phosphonates with pseudo-D _{5h} local symmetry exhibiting magnetic and luminescence bifunctional properties. Inorganic Chemistry Frontiers, 2015, 2, 558-566.	6.0	56
120	Spectroscopic Studies of Europium(III) and Gadolinium(III) Tris-β-diketonate Complexes with Diazabutadiene Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 3913-3919.	2.0	55
121	Molecule-Like Eu ³⁺ -Dimers Embedded in an Extended System Exhibit Unique Photoluminescence Properties. Journal of the American Chemical Society, 2009, 131, 8620-8626.	13.7	55
122	Ratiometric mixed Eu–Tb metal–organic framework as a new cryogenic luminescent thermometer. Journal of Materials Chemistry C, 2017, 5, 10933-10937.	5.5	55
123	Dependence of the Lifetime upon the Excitation Energy and Intramolecular Energy Transfer Rates: The ⁵ 0 Eu ^{III} Emission Case. Chemistry - A European Journal, 2012, 18, 12130-12139.	3.3	54
124	Tunable Energy-Transfer Process in Heterometallic MOF Materials Based on 2,6-Naphthalenedicarboxylate: Solid-State Lighting and Near-Infrared Luminescence Thermometry. Chemistry of Materials, 2020, 32, 7458-7468.	6.7	54
125	Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties. Journal of Materials Chemistry, 2005, 15, 3937.	6.7	52
126	Local Structure and Near-Infrared Emission Features of Neodymium-Based Amine Functionalized Organic/Inorganic Hybrids. Journal of Physical Chemistry B, 2005, 109, 20093-20104.	2.6	52

#	Article	IF	Citations
127	Novel polymer electrolytes based on gelatin and ionic liquids. Optical Materials, 2012, 35, 187-195.	3.6	51
128	Near-infrared emitters based on post-synthetic modified Ln3+-IRMOF-3. Chemical Communications, 2013, 49, 5019.	4.1	51
129	Lanthanide-polyphosphonate coordination polymers combining catalytic and photoluminescence properties. Chemical Communications, 2013, 49, 6400.	4.1	51
130	Scale up the collection area of luminescent solar concentrators towards metreâ€length flexible waveguiding photovoltaics. Progress in Photovoltaics: Research and Applications, 2016, 24, 1178-1193.	8.1	51
131	Cryogenic Nanothermometer Based on the MlLâ€103(Tb,Eu) Metal–Organic Framework. European Journal of Inorganic Chemistry, 2016, 2016, 1967-1971.	2.0	51
132	Structural modelling of Eu3+-based siloxane–poly(oxyethylene) nanohybrids. Journal of Materials Chemistry, 2001, 11, 3249-3257.	6.7	50
133	Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity. Nanoscale, 2011, 3, 1200.	5.6	50
134	Multi-functional metal–organic frameworks assembled from a tripodal organic linker. Journal of Materials Chemistry, 2012, 22, 18354.	6.7	50
135	Tethering Luminescent Thermometry and Plasmonics: Light Manipulation to Assess Real-Time Thermal Flow in Nanoarchitectures. Nano Letters, 2017, 17, 4746-4752.	9.1	50
136	(Gd,Yb,Tb)PO4 up-conversion nanocrystals for bimodal luminescence–MR imaging. Nanoscale, 2012, 4, 5154.	5.6	49
137	Photonicâ€onâ€aâ€chip: a thermal actuated Machâ€Zehnder interferometer and a molecular thermometer based on a single diâ€ureasil organicâ€norganic hybrid. Laser and Photonics Reviews, 2013, 7, 1027-1035.	8.7	49
138	Lanthanide salen-type complexes exhibiting single ion magnet and photoluminescent properties. Dalton Transactions, 2016, 45, 2974-2982.	3.3	47
139	Preparation and luminescence properties of covalent linking of luminescent ternary europium complexes on periodic mesoporous organosilica. Microporous and Mesoporous Materials, 2008, 116, 28-35.	4.4	46
140	Photoluminescent Porous Alginate Hybrid Materials Containing Lanthanide Ions. Biomacromolecules, 2008, 9, 1945-1950.	5.4	46
141	Lanthanide-DTPA grafted silica nanoparticles as bimodal-imaging contrast agents. Biomaterials, 2011, 33, 925-35.	11.4	46
142	Designing Nearâ€Infrared and Visible Light Emitters by Postsynthetic Modification of Ln ⁺³ â€"IRMOFâ€3. European Journal of Inorganic Chemistry, 2014, 2014, 5285-5295.	2.0	46
143	Color tunability of intense upconversion emission from Er3+–Yb3+ co-doped SiO2–Ta2O5 glass ceramic planar waveguides. Journal of Materials Chemistry, 2012, 22, 9901.	6.7	45
144	Engineering lanthanide-optical centres in IRMOF-3 by post-synthetic modification. New Journal of Chemistry, 2015, 39, 4249-4258.	2.8	45

#	Article	IF	CITATIONS
145	Nano-titania doped with europium and neodymium showing simultaneous photoluminescent and photocatalytic behaviour. Journal of Materials Chemistry C, 2015, 3, 4970-4986.	5.5	45
146	Synthesis, Crystal Structure, and Modelling of a New Tetramer Complex of Europium. Journal of Physical Chemistry B, 2007, 111, 9228-9238.	2.6	44
147	Photopatternable Di-ureasilâ°'Zirconium Oxocluster Organicâ°'Inorganic Hybrids As Cost Effective Integrated Optical Substrates. Chemistry of Materials, 2008, 20, 3696-3705.	6.7	44
148	Lanthanopolyoxometalates as Building Blocks for Multiwavelength Photoluminescent Organic–Inorganic Hybrid Materials. European Journal of Inorganic Chemistry, 2009, 2009, 5088-5095.	2.0	44
149	Synthesis and study of Prussian blue type nanoparticles in an alginate matrix. Journal of Materials Chemistry, 2012, 22, 20232.	6.7	44
150	Multifunctional micro- and nanosized metal–organic frameworks assembled from bisphosphonates and lanthanides. Journal of Materials Chemistry C, 2014, 2, 3311.	5.5	44
151	Multi-wavelength europium-based hybrid phosphors. Journal of Non-Crystalline Solids, 1999, 247, 203-208.	3.1	43
152	Energy-transfer from Gd(iii) to Tb(iii) in (Gd,Yb,Tb)PO4 nanocrystals. Physical Chemistry Chemical Physics, 2013, 15, 15565.	2.8	43
153	Implementing luminescence thermometry at 1.3 \hat{l} /4m using (GdNd)2O3 nanoparticles. Journal of Luminescence, 2016, 180, 25-30.	3.1	43
154	Modeling intramolecular energy transfer in lanthanide chelates: A critical review and recent advances. Fundamental Theories of Physics, 2019, , 55-162.	0.3	43
155	Thermal enhancement of upconversion emission in nanocrystals: a comprehensive summary. Physical Chemistry Chemical Physics, 2021, 23, 20-42.	2.8	43
156	Structure and photoluminescent features of di-amide cross-linked alkylene–siloxane hybrids. Journal of Materials Chemistry, 2005, 15, 3876.	6.7	42
157	Multiwavelength Luminescence in Lanthanide-Doped Hydrocalumite and Mayenite. Chemistry of Materials, 2011, 23, 1993-2004.	6.7	42
158	Implementing Thermometry on Silicon Surfaces Functionalized by Lanthanideâ€Doped Selfâ€Assembled Polymer Monolayers. Advanced Functional Materials, 2016, 26, 200-209.	14.9	42
159	Blue-light excitable La2Ce2O7:Eu3+ red phosphors for white light-emitting diodes. Journal of Alloys and Compounds, 2020, 814, 152226.	5.5	42
160	Zirconium organophosphonates as photoactive and hydrophobic host materials for sensitized luminescence of Eu(iii), Tb(iii), Sm(iii) and Dy(iii). New Journal of Chemistry, 2004, 28, 1506-1513.	2.8	41
161	Synthesis, Characterisation and Luminescent Properties of Lanthanideâ€Organic Polymers with Picolinic and Glutaric Acids. European Journal of Inorganic Chemistry, 2007, 2007, 4238-4246.	2.0	41

Bifunctional Mixed-Lanthanide Cyano-Bridged Coordination Polymers Ln0.5Ln \hat{a} \in 20.5(H2O)5[W(CN)8] (Ln/Ln \hat{a} \in 2) Ti ETQq0 0.0 rgBT /Over 1.0 rgBT

10

162

#	Article	IF	CITATIONS
163	Organic–Inorganic Eu3+/Tb3+ codoped hybrid films for temperature mapping in integrated circuits. Frontiers in Chemistry, 2013, 1, 9.	3.6	41
164	Primary Luminescent Nanothermometers for Temperature Measurements Reliability Assessment. Advanced Photonics Research, 2021, 2, 2000169.	3.6	41
165	Going Above and Beyond: A Tenfold Gain in the Performance of Luminescence Thermometers Joining Multiparametric Sensing and Multiple Regression. Laser and Photonics Reviews, 2021, 15, 2100301.	8.7	41
166	Placing a crown on Dy ^{III} – a dual property Ln ^{III} crown ether complex displaying optical properties and SMM behaviour. Journal of Materials Chemistry C, 2015, 3, 7738-7747.	5 . 5	40
167	Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF). Angewandte Chemie, 2020, 132, 1948-1956.	2.0	40
168	Exploiting bandgap engineering to finely control dual-mode Lu ₂ (Ge,Si)O ₅ :Pr ³⁺ luminescence thermometers. Journal of Materials Chemistry C, 2020, 8, 10086-10097.	5 . 5	40
169	A mean radius for the first coordination shell in lanthanides. Journal of Chemical Physics, 1994, 101, 8827-8830.	3.0	39
170	Sol–gel derived nanocomposite hybrids for full colour displays. Journal of Luminescence, 2000, 87-89, 702-705.	3.1	39
171	Lanthanide complexes of 2-hydroxynicotinic acid: synthesis, luminescence properties and the crystal structures of [Ln(HnicO)2(Î ¹ / ₄ -HnicO)(H2O)]·nH2O (Ln=Tb, Eu). Polyhedron, 2003, 22, 3529-3539.	2.2	39
172	Diurea Cross-Linked Poly(oxyethylene)/Siloxane Ormolytes for Lithium Batteries. Journal of the Electrochemical Society, 2005, 152, A429.	2.9	39
173	Synthesis, characterisation and luminescence properties of MCM-41 impregnated with an Eu3+ \hat{l}^2 -diketonate complex. Microporous and Mesoporous Materials, 2008, 113, 453-462.	4.4	39
174	Tuning the sensitivity of Ln3+-based luminescent molecular thermometers through ligand design. Journal of Luminescence, 2016, 169, 497-502.	3.1	39
175	Ga-modified YAG:Pr3+ dual-mode tunable luminescence thermometers. Chemical Engineering Journal, 2021, 421, 129764.	12.7	39
176	Rationalizing the Thermal Response of Dualâ€Center Molecular Thermometers: The Example of an Eu/Tb Coordination Complex. Advanced Optical Materials, 2022, 10, .	7.3	39
177	An interesting ligand for the preparation of luminescent plastics: The picrate ion. Journal of Chemical Physics, 2000, 112, 3293-3313.	3.0	38
178	Lanthanide Complexes of 2,6-Dihydroxybenzoic Acid: Synthesis, Crystal Structures and Luminescent Properties of [nBu4N]2[Ln(2,6-dhb)5(H2O)2] (Ln = Sm and Tb). European Journal of Inorganic Chemistry, 2003, 2003, 3609-3617.	2.0	38
179	Synthesis and photophysical properties of novel organic–inorganic hybrid materials covalently linked to a europium complex. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 318-324.	3.9	38
180	Photoluminescent Porous Modular Lanthanideâ€"Vanadiumâ€"Organic Frameworks. European Journal of Inorganic Chemistry, 2009, 2009, 4931-4945.	2.0	38

#	Article	IF	CITATIONS
181	Sustainable luminescent solar concentrators based on organic–inorganic hybrids modified with chlorophyll. Journal of Materials Chemistry A, 2018, 6, 8712-8723.	10.3	38
182	Spectroscopic Study and Local Coordination of Polyphosphate Colloidal Systems. Langmuir, 2005, 21, 1776-1783.	3.5	37
183	Photoluminescent Rare-Earth Based Biphenolate Lamellar Nanostructures. Journal of Physical Chemistry C, 2007, 111, 2539-2544.	3.1	37
184	Highly emissive Zn–Ln metal–organic frameworks with an unusual 3D inorganic subnetwork. Chemical Communications, 2012, 48, 7964.	4.1	37
185	Field-induced slow magnetic relaxation and luminescence thermometry in a mononuclear ytterbium complex. Inorganic Chemistry Frontiers, 2020, 7, 3019-3029.	6.0	37
186	Inert Shell Effect on the Quantum Yield of Neodymium-Doped Near-Infrared Nanoparticles: The Necessary Shield in an Aqueous Dispersion. Nano Letters, 2020, 20, 7648-7654.	9.1	37
187	Transparent Luminescent Solar Concentrators Using Ln3+-Based Ionosilicas Towards Photovoltaic Windows. Energies, 2019, 12, 451.	3.1	37
188	29Si nuclear-magnetic-resonance and vibrational spectroscopy studies of SiO2–TiO2 powders prepared by the sol-gel process. Journal of Materials Research, 2001, 16, 2369-2376.	2.6	36
189	A simple route towards low-temperature processing of nanoporous thin films using UV-irradiation: Application for dye solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 70-76.	3.9	36
190	Eu3+-Assisted Short-Range Ordering of Photoluminescent Bridged Silsesquioxanes. Chemistry of Materials, 2010, 22, 3599-3609.	6.7	36
191	Self-Structuring of Lamellar Bridged Silsesquioxanes with Long Side Spacers. Journal of Physical Chemistry B, 2011, 115, 10877-10891.	2.6	36
192	Crystal structure and temperature-dependent luminescence of a heterotetranuclear sodium–europium(<scp>iii</scp>) β-diketonate complex. Dalton Transactions, 2015, 44, 488-492.	3.3	36
193	Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet. Magnetochemistry, 2016, 2, 41.	2.4	36
194	Photoluminescent, transparent and flexible di-ureasil hybrids containing CdSe/ZnS quantum dots. Nanotechnology, 2008, 19, 155601.	2.6	35
195	Dual role of a di-urethanesil hybrid doped with europium \hat{l}^2 -diketonate complexes containing either waterligands or a bulky chelating ligand. Journal of Materials Chemistry, 2009, 19, 733-742.	6.7	35
196	Water-mediated structural tunability of an alkyl/siloxane hybrid: from amorphous material to lamellar structure or bilamellar superstructure. RSC Advances, 2012, 2, 2087.	3.6	35
197	Luminescent coatings from bipyridine-based bridged silsesquioxanes containing Eu3+ and Tb3+ salts. Journal of Materials Chemistry, 2012, 22, 13279.	6.7	35
198	Influence of the Matrix on the Red Emission in Europium Self-Activated Orthoceramics. Journal of Physical Chemistry C, 2015, 119, 17825-17835.	3.1	35

#	Article	IF	CITATIONS
199	Photoluminescence of new Er3+-doped titanosilicate materials. Journal of Materials Chemistry, 2000, 10, 1371-1375.	6.7	34
200	Eu(III) incorporation in sol–gel aluminum–yttrium matrix by non-hydrolytic route. Journal of Luminescence, 2005, 111, 159-166.	3.1	34
201	Unusual full-colour phosphors: Na3LnSi3O9. Optical Materials, 2006, 28, 582-586.	3.6	34
202	Modeling the emission red-shift in amorphous semiconductors and in organic-inorganic hybrids using extended multiple trapping. European Physical Journal B, 2006, 50, 371-378.	1.5	34
203	Intriguing light-emission features of ketoprofen-based Eu(III) adduct due to a strong electron–phonon coupling. Journal of Luminescence, 2016, 170, 357-363.	3.1	34
204	Self-Calibrated Double Luminescent Thermometers Through Upconverting Nanoparticles. Frontiers in Chemistry, 2019, 7, 267.	3.6	34
205	Sol–gel-derived potassium-based di-ureasils for "smart windowsâ€. Journal of Materials Chemistry, 2007, 17, 4239.	6.7	33
206	Catalytic Performance of Ceria Nanorods in Liquid-Phase Oxidations of Hydrocarbons with tert-Butyl Hydroperoxide. Molecules, 2010, 15, 747-765.	3.8	33
207	Synthesis, Texture, and Photoluminescence of Lanthanide-Containing Chitosanâ^Silica Hybrids. Journal of Physical Chemistry B, 2010, 114, 77-83.	2.6	33
208	Nanoplatforms for Plasmonâ€Induced Heating and Thermometry. ChemNanoMat, 2016, 2, 520-527.	2.8	33
209	Seven-Coordinate Tb ³⁺ Complexes with 90% Quantum Yields: High-Performance Examples of Combined Singlet- and Triplet-to-Tb ³⁺ Energy-Transfer Pathways. Inorganic Chemistry, 2021, 60, 892-907.	4.0	33
210	Thermal properties and ionic conductivities of lanthanide-based ormolytes. Electrochimica Acta, 2000, 45, 1467-1471.	5.2	32
211	Multifunctional Sodium Lanthanide Silicates: From Blue Emitters and Infrared S-Band Amplifiers to X-Ray Phosphors. Advanced Materials, 2003, 15, 980-985.	21.0	32
212	Photoluminescence and quantum yields of organic/inorganic hybrids prepared through formic acid solvolysis. Optical Materials, 2008, 30, 1058-1064.	3.6	32
213	Fluorene Based Conjugated Polyelectrolyte/Silica Nanocomposites: Chargeâ€Mediated Phase Aggregation at the Organic–Inorganic Interface. Advanced Materials, 2010, 22, 3032-3037.	21.0	32
214	Boosting the Emission Quantum Yield of Urea Cross-Linked Tripodal Poly(oxypropylene)/Siloxane Hybrids Through the Variation of Catalyst Concentration. European Journal of Inorganic Chemistry, 2012, 2012, 5390-5395.	2.0	32
215	Nearâ€Infrared Ratiometric Luminescent Thermometer Based on a New Lanthanide Silicate. Chemistry - A European Journal, 2018, 24, 11926-11935.	3.3	32
216	Largeâ€Area Tunable Visibleâ€ŧoâ€Nearâ€Infrared Luminescent Solar Concentrators. Advanced Sustainable Systems, 2018, 2, 1800002.	5.3	32

#	Article	IF	Citations
217	High-Quantum-Yield Upconverting Er ³⁺ /Yb ³⁺ -Organic–Inorganic Hybrid Dual Coatings for Real-Time Temperature Sensing and Photothermal Conversion. Journal of Physical Chemistry C, 2020, 124, 19892-19903.	3.1	32
218	Spectral and thermometric properties altering through crystal field strength modification and host material composition in luminescence thermometers based on Fe $<$ sup $>$ 3+ $<$ sup $>$ doped AB $<$ sub $>$ 2 $<$ sub $>$ 0 $<$ sub $>$ 4 $<$ sub $>$ type nanocrystals (A = Mg, Ca; B = Al, Ga). Journal of Materials Chemistry C, 2021, 9, 517-527.	5.5	32
219	Di-ureasil ormolytes doped with Mg2+ ionsPart 1: Morphological, thermal and electrochemical properties. Solid State Ionics, 2005, 176, 1591-1599.	2.7	31
220	Coordination modes of pyridine-carboxylic acid derivatives in samarium (III) complexes. Polyhedron, 2006, 25, 2471-2482.	2.2	31
221	Optical Detection of Solid-State Chiral Structures with Unpolarized Light and in the Absence of External Fields. Angewandte Chemie - International Edition, 2006, 45, 7938-7942.	13.8	31
222	Optical Properties of Lanthanide-Doped Lamellar Nanohybrids. ChemPhysChem, 2006, 7, 2215-2222.	2.1	31
223	Multimodal Tuning of Synaptic Plasticity Using Persistent Luminescent Memitters. Advanced Materials, 2022, 34, e2101895.	21.0	31
224	Ionic environment and hydrogen bonding in di-ureasil ormolytes doped with lithium triflate. Journal of Molecular Structure, 2004, 702, 39-48.	3.6	30
225	The first examples of X-ray phosphors, and C-band infrared emitters based on microporous lanthanide silicates. Journal of Alloys and Compounds, 2004, 374, 219-222.	5.5	30
226	A Novel Dry Active Biosignal Electrode Based on an Hybrid Organic-Inorganic Interface Material. IEEE Sensors Journal, 2011, 11, 2241-2245.	4.7	30
227	Engineering of metal-free bipyridine-based bridged silsesquioxanes for sustainable solid-state lighting. Journal of Materials Chemistry, 2012, 22, 6711.	6.7	30
228	Neodymium doped fluoroindogallate glasses as highly-sensitive luminescent non-contact thermometers. Optical Materials, 2017, 63, 42-45.	3.6	30
229	[INVITED] Luminescent QR codes for smart labelling and sensing. Optics and Laser Technology, 2018, 101, 304-311.	4.6	30
230	Sustainable Liquid Luminescent Solar Concentrators. Advanced Sustainable Systems, 2019, 3, 1800134.	5.3	30
231	Immobilisation of rhodium acetonitrile complexes in ordered mesoporous silica. Physical Chemistry Chemical Physics, 2002, 4, 3098-3105.	2.8	29
232	Urethane cross-linked poly(oxyethylene)/siliceous nanohybrids doped with Eu3+ions: Part 2. lonic association. Physical Chemistry Chemical Physics, 2004, 6, 649-658.	2.8	29
233	Sol-gel derived Li+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes. Journal of Solid State Electrochemistry, 2006, 10, 203-210.	2.5	29
234	Crystal structure and photoluminescence properties of lanthanide diphosphonates. Journal of Materials Chemistry, 2007, 17, 3696.	6.7	29

#	Article	IF	CITATIONS
235	A study of the distribution of chitosan onto and within a paper sheet using a fluorescent chitosan derivative. Carbohydrate Polymers, 2009, 78, 760-766.	10.2	29
236	Real time random laser properties of Rhodamine-doped di-ureasil hybrids. Optics Express, 2010, 18, 7470.	3.4	29
237	A New Generation of Primary Luminescent Thermometers Based on Silicon Nanoparticles and Operating in Different Media. Particle and Particle Systems Characterization, 2016, 33, 740-748.	2.3	29
238	The role of Li ⁺ in the upconversion emission enhancement of (YYbEr) ₂ O ₃ nanoparticles. Nanoscale, 2018, 10, 15799-15808.	5.6	29
239	Synthesis and Characterization of Er(III) and Y(III) Sodium Silicates:Â Na3ErSi3O9, a New Infrared Emitter. Chemistry of Materials, 2002, 14, 1767-1772.	6.7	28
240	Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate. Electrochimica Acta, 2002, 47, 2421-2428.	5.2	28
241	Near-Infrared Luminescent and Magnetic Cyano-Bridged Coordination Polymers Nd(phen)n(DMF)m[M(CN)8] (M = Mo, W). Inorganic Chemistry, 2011, 50, 9924-9926.	4.0	28
242	Photoluminescent lamellar bilayer mono-alkyl-urethanesils. Journal of Sol-Gel Science and Technology, 2013, 65, 61-73.	2.4	28
243	mOptical Sensing for the Internet of Things: A Smartphone ontrolled Platform for Temperature Monitoring. Advanced Photonics Research, 2021, 2, 2000211.	3.6	28
244	Modeling of the emission red-shift in organic–inorganic di-ureasil hybrids. Journal of Non-Crystalline Solids, 2006, 352, 1225-1229.	3.1	27
245	Evolution of Photoluminescence across Dimensionality in Lanthanide Silicates. Journal of Physical Chemistry B, 2007, 111, 3576-3582.	2.6	27
246	Er ³⁺ -Based Diureasil Organicâ^Inorganic Hybrids. Journal of Physical Chemistry C, 2008, 112, 19346-19352.	3.1	27
247	Silica Nanoparticles for Bimodal MRI–Optical Imaging by Grafting Gd ³⁺ and Eu ³⁺ /Tb ³⁺ Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 2828-2837.	2.0	27
248	Synergistic photoluminescence enhancement in conjugated polymer-di-ureasil organic–inorganic composites. Chemical Science, 2015, 6, 7227-7237.	7.4	27
249	A cost-effective quantum yield measurement setup for upconverting nanoparticles. Journal of Luminescence, 2017, 189, 64-70.	3.1	27
250	Sustainable Dual-Mode Smart Windows for Energy-Efficient Buildings. ACS Applied Energy Materials, 2019, 2, 1951-1960.	5.1	27
251	Emission quantum yield of a europium(III) tris- \hat{l}^2 -diketonate complex bearing a 1,4-diaza-1,3-butadiene: Comparison with theoretical prediction. Chemical Physics Letters, 2005, 413, 22-24.	2.6	26
252	Luminescence properties of composites made of a europium(III) complex and electroluminescent polymers with different energy gaps. Journal Physics D: Applied Physics, 2006, 39, 3582-3587.	2.8	26

#	Article	IF	CITATIONS
253	β-Cyclodextrin inclusion of europium(III) tris(β-diketonate)-bipyridine. Polyhedron, 2006, 25, 1471-1476.	2.2	26
254	Photoluminescent Layered Lanthanide Silicate Nanoparticles. Chemistry of Materials, 2008, 20, 205-212.	6.7	26
255	Light emission of a polyfluorene derivative containing complexed europium ions. Physical Chemistry Chemical Physics, 2015, 17, 26238-26248.	2.8	26
256	Luminescence of polymer electrolytes containing europium (III). Journal of Materials Research, 1995, 10, 202-210.	2.6	25
257	Photoluminescent polymer electrolyte based on agar and containing europium picrate for electrochemical devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 488-493.	3.5	25
258	Di-amidosils with tunable structure, morphology and emission quantum yield: the role of hydrogen bonding. Journal of Materials Chemistry C, 2015, 3, 6844-6861.	5.5	25
259	Synergy of Neodymium and Copper for Fast and Reversible Visible-light Promoted Photochromism, and Photocatalysis, in Cu/Nd-TiO ₂ Nanoparticles. ACS Applied Energy Materials, 2019, 2, 3237-3252.	5.1	25
260	Efficient Visibleâ€Lightâ€Excitable Eu ³⁺ Complexes for Red Organic Lightâ€Emitting Diodes. European Journal of Inorganic Chemistry, 2020, 2020, 1260-1270.	2.0	25
261	La _{0.4} Gd _{1.6} Zr ₂ O ₇ :0.1%Pr transparent sintered ceramic – a wide-range luminescence thermometer. Journal of Materials Chemistry C, 2020, 8, 7005-7011.	5.5	25
262	Employing three-blade propeller lanthanide complexes as molecular luminescent thermometers: study of temperature sensing through a concerted experimental/theory approach. Journal of Materials Chemistry C, 2022, 10, 7176-7188.	5.5	25
263	Urethane cross-linked poly(oxyethylene)/siliceous nanohybrids doped with Eu3+ions: Part 1. Coordinating ability of the host matrix. Physical Chemistry Chemical Physics, 2004, 6, 638-648.	2.8	24
264	Incorporation of the Eu(tta)3(H2O)2 complex into a co-condensed d-U(600)/d-U(900) matrix. Journal of Luminescence, 2008, 128, 205-212.	3.1	24
265	Li ⁺ - and Eu ³⁺ -Doped Poly(ε-caprolactone)/Siloxane Biohybrid Electrolytes for Electrochromic Devices. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2953-2965.	8.0	24
266	An overview of luminescent bioâ€based composites. Journal of Applied Polymer Science, 2014, 131, .	2.6	24
267	From quencher to potent activator – Multimodal luminescence thermometry with Fe ³⁺ in the oxides MAl ₄ O ₇ (M = Ca, Sr, Ba). Journal of Materials Chemistry C, 0, , .	5.5	24
268	Synchronous Temperature and Magnetic Field Dualâ€Sensing by Luminescence in a Dysprosium Singleâ€Molecule Magnet. Advanced Optical Materials, 2021, 9, 2101495.	7.3	24
269	Customized Luminescent Multiplexed Quickâ€Response Codes as Reliable Temperature Mobile Optical Sensors for eHealth and Internet of Things. Advanced Photonics Research, 2022, 3, 2100206.	3.6	24
270	An intra-Nd3+ visible to infrared conversion process in hybrid xerogels. Electrochimica Acta, 2000, 45, 1555-1560.	5.2	23

#	Article	IF	CITATIONS
271	Photoluminescence and local structure of Eu(III)-doped zirconium silicates. Journal of Alloys and Compounds, 2004, 374, 185-189.	5.5	23
272	Lanthanopolyoxotungstoborates: Synthesis, Characterization, and Layer-by-Layer Assembly of Europium Photoluminescent Nanostructured Films. Journal of Nanoscience and Nanotechnology, 2004, 4, 214-220.	0.9	23
273	Evidence of random magnetic anisotropy in ferrihydrite nanoparticles based on analysis of statistical distributions. Physical Review B, 2008, 77, .	3.2	23
274	Mixedâ€Metal dâ€f Phosphonate Frameworks – Photoluminescence and Magnetic Properties. European Journal of Inorganic Chemistry, 2011, 2011, 2035-2044.	2.0	23
275	Lamellar mono-amidosil hybrids incorporating monomethinecyanine dyes. Journal of Materials Chemistry C, 2013, 1, 2290.	5.5	23
276	Lanthanide Orthoantimonate Light Emitters: Structural, Vibrational, and Optical Properties. Chemistry of Materials, 2014, 26, 6351-6360.	6.7	23
277	Synchrotron powder structure of a new layered lanthanide-organic network. Zeitschrift F $\tilde{A}^{1}\!\!/4$ r Kristallographie, 2009, 224, 261-272.	1.1	22
278	Novel lanthanide luminescent materials based on multifunctional complexes of 2-sulfanylpyridine-3-carboxylic acid and silica/titania hosts. Journal of Materials Chemistry, 2011, 21, 15600.	6.7	22
279	Nanostructuring of Bridged Organosilane Precursors with Pendant Alkyl Chains. European Journal of Inorganic Chemistry, 2015, 2015, 1218-1225.	2.0	22
280	Upconversion Nanocomposite Materials With Designed Thermal Response for Optoelectronic Devices. Frontiers in Chemistry, 2019, 7, 83.	3.6	22
281	Threeâ€Mode Modulation Electrochromic Device with High Energy Efficiency for Windows of Buildings Located in Continental Climatic Regions. Advanced Sustainable Systems, 2019, 3, 1800115.	5.3	22
282	Exploring Single-Nanoparticle Dynamics at High Temperature by Optical Tweezers. Nano Letters, 2020, 20, 8024-8031.	9.1	22
283	Local Er(iii) environment in luminescent titanosilicates prepared from microporous precursorsElectronic supplementary information (ESI) available: Er LIII-edge k3-weighted EXAFS spectra and Fourier transforms. See http://www.rsc.org/suppdata/jm/b1/b107136j/. Journal of Materials Chemistry, 2002, 12, 1162-1168.	6.7	21
284	Preparation of photoluminescent monolayers based on a polyoxotungstoeuropate. Journal of Alloys and Compounds, 2004, 374, 371-376.	5.5	21
285	The role of 4,7-disubstituted phenanthroline ligands in energy transfer of europium(iii) complexes: a DFT study. New Journal of Chemistry, 2011, 35, 2435.	2.8	21
286	Luminescent urea cross-linked tripodal siloxane-based hybrids. Journal of Sol-Gel Science and Technology, 2013, 65, 83-92.	2.4	21
287	Photoluminescent layered lanthanide–organic framework based on a novel trifluorotriphosphonate organic linker. CrystEngComm, 2014, 16, 344-358.	2.6	21
288	Encapsulation of a [Dy(OH ₂) ₈] ³⁺ cation: magneto-optical and theoretical studies of a caged, emissive SMM. Chemical Communications, 2016, 52, 11335-11338.	4.1	21

#	Article	IF	CITATIONS
289	Promoting a Significant Increase in the Photoluminescence Quantum Yield of Terbium(III) Complexes by Ligand Modification. Inorganic Chemistry, 2019, 58, 12099-12111.	4.0	21
290	Synthesis and characterisation of a Rull([14]aneS4) complex immobilised in MCM-41-type mesoporous silica. Dalton Transactions RSC, 2001, , $1628-1633$.	2.3	20
291	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 315-319.	2.4	20
292	Photoluminescent Layered Y(III) and Tb(III) Silicates Doped with Ce(III). Journal of Physical Chemistry B, 2006, 110, 15312-15316.	2.6	20
293	MCM-41 Derivatised with Pyridyl Groups and Its Use as a Support for Luminescent Europium(III) Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 3786-3795.	2.0	20
294	Modelling the luminescence of extended solids: an example of a highly luminescent MCM-41 impregnated with a Eu ³⁺ \hat{l}^2 -diketonate complex. Journal of Materials Chemistry C, 2014, 2, 9701-9711.	5.5	20
295	Diffusive random laser modes under a spatiotemporal scope. Optics Express, 2015, 23, 1456.	3.4	20
296	Study of the influence of magnetic dilution over relaxation processes in a Zn/Dy single-ion magnet by correlation between luminescence and magnetism. RSC Advances, 2016, 6, 108810-108818.	3.6	20
297	Structuring of Alkylâ€Triazole Bridged Silsesquioxanes. ChemistrySelect, 2017, 2, 432-442.	1.5	20
298	Photoluminescent Lanthanide-Organic Framework Based on a Tetraphosphonic Acid Linker. Crystal Growth and Design, 2017, 17, 5191-5199.	3.0	20
299	Lanthanide Luminescence to Mimic Molecular Logic and Computing through Physical Inputs. Advanced Optical Materials, 2020, 8, 2000312.	7.3	20
300	Luminescence thermometry and field induced slow magnetic relaxation based on a near infrared emissive heterometallic complex. Dalton Transactions, 2022, 51, 8208-8216.	3.3	20
301	Small-Angle X-ray Scattering Study of Gelation and Aging of Eu3+-Doped Solâ^'Gel-Derived Siloxaneâ^'Poly(oxyethylene) Nanocomposites. Journal of Physical Chemistry B, 2002, 106, 4377-4382.	2.6	19
302	Infrared and Raman spectroscopic investigation of Eu3+-doped mono and Di-urethanesil hybrid siliceous materials. Ionics, 2002, 8, 62-72.	2.4	19
303	Ferrihydrite antiferromagnetic nanoparticles in a sol–gel derived organic–inorganic matrix. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1549-1550.	2.3	19
304	Structure and properties of Ti4+-ureasil organic-inorganic hybrids. Journal of the Brazilian Chemical Society, 2006, 17, 443-452.	0.6	19
305	Structural and magnetic studies in ferrihydrite nanoparticles formed within organic-inorganic hybrid matrices. Journal of Applied Physics, 2006, 100, 054301.	2.5	19
306	Waveguides and gratings fabrication in zirconium-based organic/inorganic hybrids. Journal of Sol-Gel Science and Technology, 2008, 48, 80-85.	2.4	19

#	Article	IF	CITATIONS
307	Energy Transfer and Emission Decay Kinetics in Mixed Microporous Lanthanide Silicates with Unusual Dimensionality. Journal of Physical Chemistry C, 2008, 112, 260-268.	3.1	19
308	Highly luminescent di-ureasil hybrid doped with a Eu(III) complex including dipicolinate ligands. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 156-160.	3.9	19
309	Efficient spectrally dynamic blueâ€toâ€green emission of bipyridineâ€based bridged silsesquioxanes for solidâ€state lighting. Physica Status Solidi - Rapid Research Letters, 2010, 4, 55-57.	2.4	19
310	A green-emitting \hat{l} ±-substituted \hat{l}^2 -diketonate Tb ³⁺ phosphor for ultraviolet LED-based solid-state lighting. Journal of Coordination Chemistry, 2014, 67, 4076-4089.	2.2	19
311	A novel near monochromatic red emissive europium(III) metal-organic framework based on 1,2,4,5-benzenetetracarboxylate: From synthesis to photoluminescence studies. Journal of Solid State Chemistry, 2017, 253, 176-183.	2.9	19
312	Highly sensitive and precise optical temperature sensors based on new luminescent Tb ³⁺ /Eu ³⁺ tetrakis complexes with imidazolic counterions. Materials Advances, 2020, 1, 1988-1995.	5.4	19
313	Luminescent thin films of Eu-bearing UiO-66 metal organic framework prepared by ALD/MLD. Applied Surface Science, 2020, 527, 146603.	6.1	19
314	Simultaneous Measurement of the Emission Quantum Yield and Local Temperature: The Illustrative Example of SrF 2 :Yb 3+ /Er 3+ Single Crystals. European Journal of Inorganic Chemistry, 2020, 2020, 1555-1561.	2.0	19
315	New Magnetic and Luminescent Dy(III) and Dy(III)/Y(III) Based Tetranuclear Silsesquioxane Cages. European Journal of Inorganic Chemistry, 2021, 2021, 2696-2701.	2.0	19
316	Comment on "Thermoinduced Magnetization in Nanoparticles of Antiferromagnetic Materials― Physical Review Letters, 2005, 94, 039707; author reply 039708.	7.8	18
317	Photoluminescent Microporous Lanthanide Silicate AVâ€21 Frameworks. Chemistry - A European Journal, 2008, 14, 8157-8168.	3.3	18
318	Photoluminescence of bulks and thin films of Eu3+-doped organic/inorganic hybrids. Journal of Alloys and Compounds, 2008, 451, 136-139.	5.5	18
319	K+-doped poly($\hat{l}\mu$ -caprolactone)/siloxane biohybrid electrolytes for electrochromic devices. Solid State lonics, 2011, 204-205, 129-139.	2.7	18
320	Metal-Free Highly Luminescent Silica Nanoparticles. Langmuir, 2012, 28, 8190-8196.	3.5	18
321	Fractality and metastability of a complex amide cross-linked dipodal alkyl/siloxane hybrid. RSC Advances, 2014, 4, 59664-59675.	3.6	18
322	Green Li+- and Er3+-doped poly($\hat{l}\mu$ -caprolactone)/siloxane biohybrid electrolytes for smart electrochromic windows. Solar Energy Materials and Solar Cells, 2014, 123, 203-210.	6.2	18
323	Thermal properties of lipid bilayers derived from the transient heating regime of upconverting nanoparticles. Nanoscale, 2020, 12, 24169-24176.	5.6	18
324	Synthesis and crystal structure of $[nBu4N][Er(pic)4]\hat{A}\cdot 5.5H2O$: a new infrared emitter. Inorganic Chemistry Communication, 2003, 6, 1234-1238.	3.9	17

#	Article	IF	CITATIONS
325	Magnetic properties of Fe-doped organic–inorganic nanohybrids. Journal of Applied Physics, 2003, 93, 6978-6980.	2.5	17
326	Matrix assisted formation of ferrihydrite nanoparticles in a siloxane/poly(oxyethylene) nanohybrid. Journal of Materials Chemistry, 2005, 15, 484.	6.7	17
327	Photoluminescent hybrid materials based on lanthanopolyoxotungstates and 3-hydroxypicolinic acid. Journal of Alloys and Compounds, 2008, 451, 422-425.	5.5	17
328	Terbium(III)-containing organic–inorganic hybrids synthesized through hydrochloric acid catalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201, 214-221.	3.9	17
329	Lamellar mono-amidosil hybrids doped with Rhodamine (B) methyl ester perchlorate. Journal of Sol-Gel Science and Technology, 2014, 72, 239-251.	2.4	17
330	Dual-Property Supramolecular H-Bonded 15-Crown-5 Ln(III) Chains: Joint Magneto-Luminescence and <i>ab Initio</i> Studies. Inorganic Chemistry, 2017, 56, 7344-7353.	4.0	17
331	Efficient green-emitting Tb3+-doped di-ureasil coating phosphors for near-UV excited light-emitting diodes. Journal of Luminescence, 2020, 219, 116910.	3.1	17
332	Theoretical Evidence of the Singlet Predominance in the Intramolecular Energy Transfer in Ruhemann's Purple Tb(III) Complexes. Advanced Theory and Simulations, 2021, 4, 2000304.	2.8	17
333	A Hybrid Materials Approach for Fabricating Efficient WLEDs Based on Diâ€Ureasils Doped with Carbon Dots and a Europium Complex. Advanced Materials Technologies, 2022, 7, 2100727.	5.8	17
334	Photoluminescent films of microporous titanosilicate ETS-10 doped with europium(III). Microporous and Mesoporous Materials, 2005, 79, 13-19.	4.4	16
335	Synthesis, Characterization, and Luminescence Properties of Eu3+3-Phenyl-4-(4-toluoyl)-5-isoxazolonate Based Organic-Inorganic Hybrids. European Journal of Inorganic Chemistry, 2006, 2006, 3923-3929.	2.0	16
336	Lanthanide-based lamellar nanohybrids: The case of erbium. Materials Science and Engineering C, 2007, 27, 1368-1371.	7.3	16
337	Fabrication of low-cost thermo-optic variable wave plate based on waveguides patterned on di-ureasil hybrids. Optics Express, 2014, 22, 27159.	3.4	16
338	Microwave Synthesis of a photoluminescent Metal-Organic Framework based on a rigid tetraphosphonate linker. Inorganica Chimica Acta, 2017, 455, 584-594.	2.4	16
339	Site-selective Eu(<scp>iii</scp>) spectroscopy of highly efficient luminescent mixed-metal Pb(<scp>ii</scp>)/Eu(<scp>iii</scp>) coordination polymers. RSC Advances, 2017, 7, 6093-6101.	3.6	16
340	Luminescent Electrochromic Devices for Smart Windows of Energy-Efficient Buildings. Energies, 2018, 11, 3513.	3.1	16
341	Flexible Optical Amplifier for Visible-Light Communications Based on Organic–Inorganic Hybrids. ACS Omega, 2018, 3, 13772-13781.	3.5	16
342	(INVITED) JOYSpectra: A web platform for luminescence of lanthanides. Optical Materials: X, 2021, 11, 100080.	0.8	16

#	Article	IF	CITATIONS
343	Magnetic probing of tunable Eu/sup 3+/ local site in organic-inorganic nanohybrids. IEEE Transactions on Magnetics, 2001, 37, 2935-2937.	2.1	15
344	Eu3+Coordination in an Organic/Inorganic Hybrid Matrix with Methyl End-Capped Short Polyether Chains. Journal of Physical Chemistry B, 2005, 109, 7110-7119.	2.6	15
345	Nanoencapsulation of Luminescent 3-Hydroxypicolinate Lanthanide Complexes. Journal of Physical Chemistry C, 2009, 113, 7567-7573.	3.1	15
346	Thin film optimization design of organic–inorganic hybrids for waveguide highâ€rejection optical filters. Physica Status Solidi - Rapid Research Letters, 2011, 5, 280-282.	2.4	15
347	Electro-optical properties of the DNA-Eu3+ bio-membranes. Journal of Electroanalytical Chemistry, 2013, 708, 116-123.	3.8	15
348	Luminescent Transparent Composite Films Based on Lanthanopolyoxometalates and Filmogenic Polysaccharides. European Journal of Inorganic Chemistry, 2013, 2013, 1890-1896.	2.0	15
349	Infrared and Raman spectroscopy of non-conventional hydrogen bonding between ⟨i>N⟨ i>′-disubstituted urea and thiourea groups: a combined experimental and theoretical investigation. Physical Chemistry Chemical Physics, 2019, 21, 3310-3317.	2.8	15
350	Gd- and Eu-Loaded Iron Oxide@Silica Core–Shell Nanocomposites as Trimodal Contrast Agents for Magnetic Resonance Imaging and Optical Imaging. Inorganic Chemistry, 2019, 58, 16618-16628.	4.0	15
351	Lanthanide-based downshifting layers tested in a solar car race. Opto-Electronic Advances, 2019, 2, 190006-190006.	13.3	15
352	Temperature sensing in Tb ³⁺ /Eu ³⁺ -based tetranuclear silsesquioxane cages with tunable emission. RSC Advances, 2021, 11, 34735-34741.	3.6	15
353	Local coordination of europium(III) in poly(ethylene oxide) and poly(propylene oxide). Electrochimica Acta, 1995, 40, 2143-2146.	5.2	14
354	Excitation energy dependence of luminescent sol-gel organically modified silicates. Thin Solid Films, 1999, 343-344, 476-480.	1.8	14
355	Sol–gel-derived POE/siliceous hybrids doped with Na+ ions: morphology and ionic conductivity. Solid State Ionics, 2003, 156, 85-93.	2.7	14
356	Study of sol–gel derived di-ureasils doped with zinc triflate. Solid State Sciences, 2006, 8, 1484-1491.	3.2	14
357	Crystal Structure, Solid-State NMR Spectroscopic and Photoluminescence Studies of Organic-Inorganic Hybrid Materials (HL)6[Ge6(OH)6(hedp)6]·2(L)·nH2O, L = hqn or phen. European Journal of Inorganic Chemistry, 2006, 2006, 4741-4751.	2.0	14
358	Chiral microporous rare-earth silico-germanates: Synthesis, structure and photoluminescence properties. Microporous and Mesoporous Materials, 2013, 166, 50-58.	4.4	14
359	Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy. Nanoscale Advances, 2019, 1, 2537-2545.	4.6	14
360	Colloidal (Gd0.98Nd0.02)2O3 nanothermometers operating in a cell culture medium within the first and second biological windows. Journal of Rare Earths, 2020, 38, 483-491.	4.8	14

#	Article	IF	CITATIONS
361	Protein Cohabitation: Improving the Photochemical Stability of R-Phycoerythrin in the Solid State. Journal of Physical Chemistry Letters, 2020, 11, 6249-6255.	4.6	14
362	Thermal stability and morphology of polymer electrolytes based on europium bromide. Electrochimica Acta, 1995, 40, 2383-2387.	5.2	13
363	Decay times of Eu(III) and Nd(III) in polymer electrolytes. Solid State Ionics, 1996, 85, 181-185.	2.7	13
364	Cation coordination in mono-urethanesil hybrids doped with sodium triflate. Electrochimica Acta, 2003, 48, 1977-1989.	5.2	13
365	Photoluminescence of lanthanide NASICONs: Na5LnSi4O12, Ln = Eu, Tb. Journal of Materials Chemistry, 2006, 16, 3139.	6.7	13
366	Optically functional nanocomposites with poly(oxyethylene)-based di-ureasils and mesoporous MCM-41. Microporous and Mesoporous Materials, 2006, 94, 185-192.	4.4	13
367	Terbium(III) complexes of 2-aminonicotinic, thiosalicylic and anthranilic acids: synthesis and photoluminescence properties. Journal of Alloys and Compounds, 2008, 451, 575-577.	5.5	13
368	Structure, thermal properties, conductivity and electrochemical stability of di-urethanesil hybrids doped with LiCF3SO3. Ionics, 2010, 16, 193-201.	2.4	13
369	Luminescent SiO2-coated Gd2O3:Eu3+ nanorods/poly(styrene) nanocomposites by in situ polymerization. Optical Materials, 2010, 32, 1622-1628.	3.6	13
370	Photoluminescent bimetallic-3-hydroxypicolinate/graphene oxide nanocomposite. RSC Advances, 2012, 2, 9443.	3.6	13
371	A novel 3-D cuprous iodide polymer with a high Cu/I ratio. Dalton Transactions, 2018, 47, 3253-3257.	3.3	13
372	Radiation-to-heat conversion efficiency in SrF2:Yb3+/Er3+ upconverting nanoparticles. Optical Materials, 2018, 83, 1-6.	3.6	13
373	Chlorine-free, monolithic lanthanide series rare earth oxide aerogels via epoxide-assisted sol-gel method. Journal of Sol-Gel Science and Technology, 2019, 89, 176-188.	2.4	13
374	Decoding a Percolation Phase Transition of Water at \hat{a}^4 330 K with a Nanoparticle Ruler. Journal of Physical Chemistry Letters, 2020, 11, 6704-6711.	4.6	13
375	Óxido misto de Ãŧrio-alumÃnio dopado com Eu(III). Quimica Nova, 2005, 28, 238-243.	0.3	13
376	A perspective on sustainable luminescent solar concentrators. Journal of Applied Physics, 2022, 131, .	2.5	13
377	Morphology of Rare-Earth Polymeric Electrolytes. Chemistry of Materials, 1995, 7, 2316-2321.	6.7	12
378	Cation concentration and local ligand field of polyether–salt complexes. Journal of Chemical Physics, 1996, 105, 8878-8884.	3.0	12

#	Article	IF	Citations
379	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44, 261-266.	1.6	12
380	Local coordination of Eu(III) in organic/inorganic amine functionalized hybrids. Journal of Alloys and Compounds, 2004, 374, 50-55.	5.5	12
381	[Ga 3+ 8 Sm 3+ 2, Ga 3+ 8 Tb 3+ 2] Metallacrowns are Highly Promising Ratiometric Luminescent Molecular Nanothermometers Operating at Physiologically Relevant Temperatures. Chemistry - A European Journal, 2020, 26, 13792-13796.	3.3	12
382	Ion-chain effective field in polymer electrolytes. Chemical Physics Letters, 1997, 264, 57-62.	2.6	11
383	An investigation of the morphological, electrical and optoelectronic properties of short chain Di-ureasils doped with Er3+ ions. lonics, 2002, 8, 73-78.	2.4	11
384	Ion solvation and hydrogen bonding in Eu3+-doped mono-urethanesil hybrids carrying pendant short polyether chains. Journal of Molecular Structure, 2002, 611, 83-93.	3.6	11
385	Novel Microporous and Layered Luminescent Lanthanide Silicates. Materials Science Forum, 2004, 455-456, 527-531.	0.3	11
386	Effect of presence of an acid catalyst on structure and properties of iron-doped siloxane-polyoxyethylene nanocomposites prepared by sol–gel. Journal of Non-Crystalline Solids, 2004, 345-346, 585-590.	3.1	11
387	Functionalization of atomic force microscope tips by dielectrophoretic assembly of Gd ₂ O ₃ Eu ³⁺ nanorods. Nanotechnology, 2008, 19, 295702.	2.6	11
388	Photoluminescent Metal–Organic Frameworks – Rapid Preparation, Catalytic Activity, and Framework Relationships. European Journal of Inorganic Chemistry, 2013, 2013, 5576-5591.	2.0	11
389	Highly stable plastic optical fibre amplifiers containing [Eu(btfa)3(MeOH)(bpeta)]: A luminophore able to drive the synthesis of polyisocyanates. Polymer, 2014, 55, 488-494.	3.8	11
390	Crystal structure, topology, tiling and photoluminescence properties of 4d–4f hetero-metal organic frameworks based on 3,5-pyrazoledicaboxylate. RSC Advances, 2014, 4, 7818.	3.6	11
391	Primary thermometers based on sol–gel upconverting Er3+/Yb3+ co-doped yttrium tantalates with high upconversion quantum yield and emission color tunability. Journal of Sol-Gel Science and Technology, 2022, 102, 249-263.	2.4	11
392	Luminescent thermometry based on Er3+/Yb3+ co-doped yttrium niobate with high NIR emission and NIR-to-visible upconversion quantum yields. Journal of Luminescence, 2022, 248, 118986.	3.1	11
393	Small-angle X-ray scattering and X-ray absorption near-edge structure study of iron-doped siloxane-polyoxyethylene nanocomposites. Journal of Applied Crystallography, 2003, 36, 405-409.	4.5	10
394	Structure of magnetic poly(oxyethylene)–siloxane nanohybrids doped with Felland Felll. Journal of Applied Crystallography, 2003, 36, 961-966.	4.5	10
395	FT-IR and Raman spectroscopic study of di-urea cross-linked poly(oxyethylene)/siloxane ormolytes doped with Zn2+ ions. Vibrational Spectroscopy, 2006, 40, 278-288.	2.2	10
396	In situ synthesis of lanthanide complex in urea cross-linked organic/inorganic di-ureasil hybrids via carboxylic acid solvolysis. Journal of Luminescence, 2007, 122-123, 265-267.	3.1	10

#	Article	IF	CITATIONS
397	Timeâ€resolved random laser spectroscopy of inhomogeneously broadened systems. Laser and Photonics Reviews, 2014, 8, L32.	8.7	10
398	Luminescent DNA- and Agar-Based Membranes. Journal of Nanoscience and Nanotechnology, 2014, 14, 6685-6691.	0.9	10
399	Influence of the Crystal Structure on the Luminescence Properties of Mixed Eu,La-(1,10-Phenanthroline) Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 4861-4868.	2.0	10
400	Y ₂ (Ge,Si)O ₅ :Pr phosphors: multimodal temperature and pressure sensors shaped by bandgap management. Journal of Materials Chemistry C, 2021, 9, 13818-13831.	5 . 5	10
401	Comment on trivalent europium lifetimes in the presence of intramolecular energy transfer processes. Journal of the Brazilian Chemical Society, 2008, 19, 299-301.	0.6	10
402	Hexagonal-phase NaREF ₄ upconversion nanocrystals: the matter of crystal structure. Nanoscale, 2021, 13, 19771-19782.	5.6	10
403	Understanding the Shell Passivation in Ln ³⁺ â€Doped Luminescent Nanocrystals. Small Structures, 2022, 3, .	12.0	10
404	Hyperspectral imaging thermometry assisted by upconverting nanoparticles: Experimental artifacts and accuracy. Physica B: Condensed Matter, 2022, 629, 413639.	2.7	10
405	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 375-381.	2.4	9
406	Di-ureasil ormolytes doped with Mg2+ ions: Part 2. Cationic and anionic environments. Solid State lonics, 2005, 176, 1601-1611.	2.7	9
407	Photoluminescent layered Y/Er silicates. Journal of Alloys and Compounds, 2008, 451, 624-626.	5.5	9
408	Optical material composed of a di-urethanesil host hybrid and a europium complex. Journal of Alloys and Compounds, 2008, 451, 201-205.	5.5	9
409	UV laser photofabrication of waveguide couplers using selfâ€patterning organic–inorganic hybrids. Microwave and Optical Technology Letters, 2011, 53, 2304-2307.	1.4	9
410	Functional novel polymer electrolytes containing europium picrate. Materials Research Innovations, 2011, 15, s3-s7.	2.3	9
411	Redox behaviour, electrochromic properties and photoluminescence of potassium lanthano phosphomolybdate sandwich-type compounds. RSC Advances, 2013, 3, 16697.	3.6	9
412	Luminescent κ-Carrageenan-Based Electrolytes Containing Neodymium Triflate. Molecules, 2019, 24, 1020.	3.8	9
413	Red-Emitting Coatings for Multifunctional UV/Red Emitting LEDs Applied in Plant Circadian Rhythm Control. ECS Journal of Solid State Science and Technology, 2020, 9, 016008.	1.8	9
414	Sustainable Smart Tags with Twoâ€Step Verification for Anticounterfeiting Triggered by the Photothermal Response of Upconverting Nanoparticles. Advanced Photonics Research, 2022, 3, .	3.6	9

#	Article	IF	Citations
415	Lanthanides for the new generation of optical sensing and Internet of Things. Fundamental Theories of Physics, 2022, , 31-128.	0.3	9
416	Coordination of Eu3+ in mono-urethane cross-linked hybrid xerogels. Ionics, 1999, 5, 251-260.	2.4	8
417	Synthesis and Luminescence of Eu3+-Doped Narsarsukite Prepared by the Sol-Gel Process. Journal of Sol-Gel Science and Technology, 2003, 26, 1005-1009.	2.4	8
418	Cationic and anionic environments in mono-urethanesil hybrids doped with magnesium triflate. Solid State Ionics, 2004, 166, 103-114.	2.7	8
419	Polynuclear Molybdenum and Tungsten Complexes containing 3-Hydroxypicolinic Acid and Europium (III). Materials Science Forum, 2006, 514-516, 1305-1312.	0.3	8
420	Structure and photoluminescence of di-amidosil nanohybrids incorporating europium triflate. Journal of Alloys and Compounds, 2008, 451, 510-515.	5 . 5	8
421	Eu ^{III} â€Doping of Lamellar Bilayer and Amorphous Monoâ€Amide Crossâ€Linked Alkyl/Siloxane Hybrids. European Journal of Inorganic Chemistry, 2010, 2010, 2688-2699.	2.0	8
422	Enhanced photoluminescence features of Eu3+-modified di-ureasil-zirconium oxocluster organic–inorganic hybrids. Optical Materials, 2010, 32, 1587-1591.	3.6	8
423	Photoluminescent Epoxy/Gd ₂ O ₃ :Eu ³⁺ UVâ€cured Nanocomposites. Macromolecular Materials and Engineering, 2013, 298, 181-189.	3.6	8
424	Highly Efficient Luminescent Polycarboxylate Lanthanide Complexes Incorporated into Di-Ureasils by an In-Situ Solâ€"Gel Process. Polymers, 2018, 10, 434.	4.5	8
425	Making Prussian blue analogues nanoparticles luminescent: effect of the luminophore confinement over the properties. Nanoscale, 2019, 11, 7097-7101.	5.6	8
426	Nanoscale Thermometry for Hyperthermia Applications. , 2019, , 139-172.		8
427	Luminescence and decay times Eu(III) and Nd(III) in polymer electrolytes. Journal of Materials Research, 1996, 11, 2104-2108.	2.6	7
428	Luminescence of non-hygroscopic polymer electrolytes modified by europium picrate complexes. Electrochimica Acta, 1998, 43, 1365-1369.	5.2	7
429	Short chain U(600) di-urea cross-linked poly(oxyethylene)/siloxane ormolytes doped with lanthanum triflate salt. Electrochimica Acta, 2002, 47, 2551-2555.	5.2	7
430	Eu3+ doped polyphosphate–aminosilane organic–inorganic hybrids. Journal of Alloys and Compounds, 2004, 374, 74-78.	5.5	7
431	Enhanced Eu ³⁺ Emission in Aqueous Phosphotungstate Colloidal Systems: Stabilization of Polyoxometalate Nanostructures. Langmuir, 2010, 26, 14170-14176.	3.5	7
432	Lanthanide-Containing 2,2′-Bipyridine Bridged Urea Cross-Linked Polysilsesquioxanes. Spectroscopy Letters, 2010, 43, 321-332.	1.0	7

#	Article	IF	CITATIONS
433	Optical filters and resonant cavities based on di-ureasil organic–inorganic hybrids. Journal of Sol-Gel Science and Technology, 2011, 59, 475-479.	2.4	7
434	Red (Eu ³⁺), Green (Tb ³⁺) and Ultraviolet (Gd ³⁺) Emitting Nitrilotriacetate Complexes Prepared by One-step Synthesis. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2014, 69, 231-238.	0.7	7
435	Modelling the Luminescence of Phosphonate Lanthanide-Organic Frameworks. European Journal of Inorganic Chemistry, 2015, 2015, 1254-1260.	2.0	7
436	Monitoring of nanoclay–protein adsorption isotherms via fluorescence techniques. Colloids and Surfaces B: Biointerfaces, 2017, 157, 373-380.	5.0	7
437	Novel Highly Luminescent Amine-Functionalized Bridged Silsesquioxanes. Frontiers in Chemistry, 2017, 5, 131.	3.6	7
438	UV-converting blue-emitting polyfluorene-based organic-inorganic hybrids for solid state lighting. Polymer, 2019, 174, 109-113.	3.8	7
439	Phosphor-based green-emitting coatings for circadian lighting. Journal of Luminescence, 2020, 224, 117298.	3.1	7
440	Controlling the thermal switching in upconverting nanoparticles through surface chemistry. Nanoscale, 2021, 13, 16267-16276.	5.6	7
441	Time resolved spectroscopy of Eu(III) and Nd(III) in polymeric matrices. Synthetic Metals, 1995, 69, 587-588.	3.9	6
442	Lanthanide compounds containing a benzo-15-crown-5 derivatised [60]fullerene and the related [Tb(H2O)3(NO3)2(acac)]·C14H2OO5supramolecular adduct. New Journal of Chemistry, 2004, 28, 1352-1358.	2.8	6
443	White-Light Emitting Di-Ureasil Hybrids. Materials, 2018, 11, 2246.	2.9	6
444	Dielectric-Loaded Waveguides as Advanced Platforms for Diagnostics and Application of Transparent Thin Films. Langmuir, 2021, 37, 3248-3260.	3 . 5	6
445	Reprogrammable and Reconfigurable Photonic Molecular Logic Gates Based on Ln ³⁺ lons. Advanced Optical Materials, 2022, 10, .	7.3	6
446	On the long decay time of the 7F5 level of Tb3+. Journal of Luminescence, 2022, 248, 118933.	3.1	6
447	Neodymium doped, sol-gel processed polymer electrolytes. Ionics, 1998, 4, 170-174.	2.4	5
448	Novel luminescent materials based on silica doped with an europium(III) complex of 2,6-dihydroxybenzoic acidThe crystal structure of [nBu4N]2[Eu(2,6-Hdhb)5(H2O)2]. Journal of Alloys and Compounds, 2004, 374, 344-348.	5 . 5	5
449	Nanostructure and luminescent properties of sol-gel derived europium-doped amine functionalised hybrids. Journal of Sol-Gel Science and Technology, 2006, 37, 99-104.	2.4	5
450	Hierarchically Constrained Dynamics and Emergence of Complex Behavior in Nanohybrids. Small, 2010, 6, 386-390.	10.0	5

#	Article	IF	CITATIONS
451	1,4-Bis(2,2′:6′,2′′-terpyridin-4′-yl)benzene. Acta Crystallographica Section E: Structure Reports Onli 2010, 66, o3241-o3242.	ne, 0:2	5
452	Lamellar Salt-Doped Hybrids with Two Reversible Order/Disorder Phase Transitions. Journal of Physical Chemistry B, 2013, 117, 14529-14543.	2.6	5
453	Coordination polymers based on a glycine-derivative ligand. CrystEngComm, 2014, 16, 8119-8137.	2.6	5
454	Luminescent Electrochromic Device Based on a Biohybrid Electrolyte Doped with a Mixture of Potassium Triflate and a Europium Â-diketonate Complex. ECS Transactions, 2014, 61, 213-225.	0.5	5
455	Luminescent Thermometers: Implementing Thermometry on Silicon Surfaces Functionalized by Lanthanideâ€Doped Selfâ€Assembled Polymer Monolayers (Adv. Funct. Mater. 2/2016). Advanced Functional Materials, 2016, 26, 312-312.	14.9	5
456	Eu(II)â€Activated Silicates for UV Lightâ€Emitting Diodes Tuning into Warm White Light. Advanced Engineering Materials, 2020, 22, 2000422.	3.5	5
457	High Emission Quantum Yield Tb3+ -Activated Organic-Inorganic Hybrids for UV-Down-Shifting Green Light-Emitting Diodes. European Journal of Inorganic Chemistry, 2020, 2020, 1736-1742.	2.0	5
458	3D sub-cellular localization of upconverting nanoparticles through hyperspectral microscopy. Physica B: Condensed Matter, 2022, 626, 413470.	2.7	5
459	Theranostic of orthotopic gliomas by core-shell structured nanoplatforms. Light: Science and Applications, 2022, 11, .	16.6	5
460	Structure of luminescent mono and di-urethanesil nanocomposites doped with Eu3+ ions. Nuclear Instruments & Methods in Physics Research B, 2003, 199, 117-122.	1.4	4
461	d-Poly(e-caprolactone) (530)/siloxane biohybrid films doped with protic ionic liquids. Journal of Electroanalytical Chemistry, 2017, 799, 249-256.	3.8	4
462	Layered Zinc Hydroxide Salts Intercalated with Anionic Surfactants and Adsolubilized with UV Absorbing Organic Molecules. Journal of the Brazilian Chemical Society, 2015, , .	0.6	4
463	Synergistic use of Raman and photoluminescence signals for optical thermometry with large temperature sensitivity. Physica B: Condensed Matter, 2022, 626, 413455.	2.7	4
464	Modification of the luminescence properties of an Europium(III) Tris(\hat{l}^2 -diketonate) Complex by Inclusion in \hat{l}^3 -cyclodextrin and 2,3,6-trimethyl- \hat{l}^3 -cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 55, 329-333.	1.6	3
465	Low Cost UV Patternable Organic-Inorganic Sol-Gel Siloxanepoly(Oxyethylene) Materials for Integrated Optics., 2006,,.		3
466	Photoluminescence Changes Induced by Self-Organisation in Bridged Silsesquioxanes. Materials Science Forum, 2006, 514-516, 118-122.	0.3	3
467	Photofunctional hybrid silica microspheres covalently functionalized with metalloporphyrins. Journal of Solid State Chemistry, 2012, 194, 9-14.	2.9	3
468	Natural Membranes for Application in Biomedical Devices. Molecular Crystals and Liquid Crystals, 2012, 562, 147-155.	0.9	3

#	Article	IF	Citations
469	Easily processable multimodal spectral converters based on metal oxide/organicâ€"inorganic hybrid nanocomposites. Nanotechnology, 2015, 26, 405601.	2.6	3
470	Rareâ€Earth Germanate Visible, Nearâ€Infrared, and Upâ€Conversion Emitters. European Journal of Inorganic Chemistry, 2018, 2018, 2444-2451.	2.0	3
471	Eu(II)â€Activated Silicates for UV Lightâ€Emitting Diodes Tuning into Warm White Light. Advanced Engineering Materials, 2020, 22, 2070036.	3.5	3
472	Cellulose Based Photonic Materials Displaying Direction Modulated Photoluminescence. Frontiers in Bioengineering and Biotechnology, 2021, 9, 617328.	4.1	3
473	Full-Color Phosphors from Amine-Functionalized Crosslinked Hybrids Lacking Metal Activator Ions. Advanced Functional Materials, 2001, 11, 111-115.	14.9	3
474	Sustainable Smart Tags with Twoâ€Step Verification for Anticounterfeiting Triggered by the Photothermal Response of Upconverting Nanoparticles. Advanced Photonics Research, 2022, 3, .	3.6	3
475	Ion-chain local interactions in polyether–salt complexes. Electrochimica Acta, 1998, 43, 1371-1374.	5.2	2
476	Inorganic nanoparticles in organic-inorganic hybrid hosts for planar waveguides. , 2002, , .		2
477	Di-Urethane Cross-linked Poly(oxyethylene)/Siloxane Nanohybrids Doped With Eu(CF3SO3)3. Materials Research Society Symposia Proceedings, 2004, 847, 128.	0.1	2
478	Magnetic behavior of iron (III) oxyhydroxy nanoparticles in organic–inorganic hybrid matrices. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 962-965.	2.3	2
479	Preparation of Photoluminescent Materials from a Lanthanide-Doped Microporous Titanosilicate Precursor. Materials Science Forum, 2006, 514-516, 123-127.	0.3	2
480	Organically Modified Silica-Based Xerogels Derived from 3-Aminopropyltrimethoxysilane and 3-Isocyanatepropyltriethoxysilane through Carboxylic Acid Solvolysis. Materials Science Forum, 2006, 514-516, 108-112.	0.3	2
481	A zirconosilicate system suitable for lanthanide framework incorporation. Journal of Luminescence, 2007, 122-123, 902-904.	3.1	2
482	Spectroscopic studies of an europium(III) tris-β-diketonate complex bearing a pyrazolylpyridine ligand. Journal of Alloys and Compounds, 2008, 451, 344-346.	5.5	2
483	Organic-inorganic hybrids for the new generation of optical networks., 2009,,.		2
484	Synthesis, structure, luminescence and magnetic properties of the coordination polymer {[Eu(H2O)5][Mo(CN)8]}â^ž containing bridging cyanide ligands. Russian Chemical Bulletin, 2010, 59, 476-479.	1.5	2
485	Thermo-optic variable attenuator/waveplate based on waveguides patterned on organic-inorganic hybrids. , 2013, , .		2
486	Flexible 90° hybrid coupler for coherent optical systems based on organic-inorganic hybrids. , 2016, , .		2

#	Article	IF	Citations
487	Cryogenic Luminescent Ratiometric Thermometers Based on Tetragonal Na[LnSiO $<$ sub $>4<$ /sub $>$]Â \times NaOH (Ln = Gd, Tb, Eu; x â $\%$ 0.2). European Journal of Inorganic Chemistry, 2020, 2020, 1852-1859.	2.0	2
488	Flexible photoluminescent waveguide amplifiers to improve visible light communication platforms. IET Optoelectronics, 2020, 14, 356-358.	3.3	2
489	Understanding the Shell Passivation in Ln ³⁺ â€Doped Luminescent Nanocrystals. Small Structures, 2022, 3, .	12.0	2
490	Magnetic Sol-Gel Derived Poly(oxyethylene)- Siloxane Nanohybrids. Materials Research Society Symposia Proceedings, 2002, 726, 1.	0.1	1
491	Nanosized Photonics and Magnetism in Organic-Inorganic Hybrids. Materials Science Forum, 2004, 455-456, 564-568.	0.3	1
492	Photoluminescence-structure relationships in ormosils for integrated optical devices. Materials Research Society Symposia Proceedings, 2004, 847, 79.	0.1	1
493	Terbiumpolyoxotungstate Anions as Building Units to Fabricate Nanostructured Films. Materials Science Forum, 2006, 514-516, 1135-1139.	0.3	1
494	Waveguide features in self-patternable amine functionalized organic-inorganic hybrids., 2007,,.		1
495	Selective mode launching in multimode UV-patterned channel waveguide in organic-inorganic hybrids. , 2011, , .		1
496	One- and two-photon pumped random laser action in Rhodamine B doped di-ureasil hybrids. , 2012, , .		1
497	Role of the reactive atmosphere during the sol–gel synthesis on the enhancing of the emission quantum yield of urea cross-linked tripodal siloxane-based hybrids. Journal of Sol-Gel Science and Technology, 2013, 70, 227.	2.4	1
498	Di-urethanesil hybrid electrolytes doped with Mg(CF3SO3)2. Ionics, 2014, 20, 29-36.	2.4	1
499	Polarization state control using thermo-optic effect in organic-inorganic hybrids waveguides. , 2014, , .		1
500	Performance assessment of a QPSK coherent demodulator based on organic-inorganic hybrids. , 2017, , .		1
501	Molecular Logic Devices: Lanthanide Luminescence to Mimic Molecular Logic and Computing through Physical Inputs (Advanced Optical Materials 12/2020). Advanced Optical Materials, 2020, 8, 2070050.	7.3	1
502	A Cost-Effective demodulator for the Next Generation of Optical Access Networks Receivers. , 2018, , .		1
503	Mixing phosphors to improve the temperature measuring quality. Optical Materials, 2021, 122, 111719.	3.6	1
504	Chapter 8. Organic–Inorganic Hybrids Thermometry. RSC Nanoscience and Nanotechnology, 2015, , 237-272.	0.2	1

#	Article	IF	Citations
505	Going Above and Beyond: A Tenfold Gain in the Performance of Luminescence Thermometers Joining Multiparametric Sensing and Multiple Regression (Laser Photonics Rev. 15(11)/2021). Laser and Photonics Reviews, 2021, 15, 2170056.	8.7	1
506	Lanthanide Emission for Solar Spectral Converters: An Energy Transfer Viewpoint. Springer Series on Fluorescence, 2021, , 1-33.	0.8	1
507	Solution of spherically symmetric quantum models by the transfer-matrix method. European Journal of Physics, 1997, 18, 369-373.	0.6	0
508	Er3+-doped Polyether/siloxane Hybrid Materials for Optoelectronics. Materials Research Society Symposia Proceedings, 2004, 847, 198.	0.1	0
509	Novel Microporous Lanthanoid Silicates with Tobermorite-Like Structure ChemInform, 2004, 35, no.	0.0	0
510	Photoluminescent Layered Lanthanide Silicates ChemInform, 2004, 35, no.	0.0	0
511	Photoluminescence of Di-Ureasil Hybrids Doped with Silica Coated Ag Nanoparticles. Materials Science Forum, 2006, 514-516, 113-117.	0.3	0
512	Chromatic Dispersion in Ge-Doped SiO ₂ -Based Single Mode Fibres due to Temperature Dependence of the Ultraviolet Absorption: Numerical and Experimental Results. Materials Science Forum, 2006, 514-516, 369-376.	0.3	0
513	Iron Oxide and Oxide-Hydroxide Nanoparticles in Organic-Inorganic Matrices. Materials Science Forum, 2006, 514-516, 142-146.	0.3	0
514	Modal analysis of organic-inorganic hybrid planar waveguides for integrated optics., 2007,,.		0
515	Cation coordination and hydrogen bonding in potassium and magnesium based-di-amidosil hybrids. Journal of Molecular Structure, 2008, 874, 128-137.	3.6	0
516	Photoluminescent Materials Based on Silica Doped with Lanthanide Complexes of 4′-Formylbenzo-15-Crown-5. Journal of Nanoscience and Nanotechnology, 2010, 10, 2779-2786.	0.9	0
517	trans-Bis(4,7-diphenyl-1,10-phenanthroline-κ2N,N′)bis(nitrato-κ2O,O′)zinc(II). Acta Crystallographica Section E: Structure Reports Online, 2010, 66, m1608-m1609.	0.2	0
518	Low-cost optical components based on organic-inorganic hybrids produced using direct UV writing technique. , 2010, , .		0
519	High-rejection optical filters patterned on organic-inorganic hybrids using UV laser direct writing. , 2011, , .		0
520	Integrated optics structures on sol-gel derived organic-inorganic hybrids for optical communications. , 2011, , .		0
521	Light-emitting lanthanide-based organic–inorganic hybrids. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, s49-s49.	0.3	0
522	Thermo-optic Mach-Zehnder modulator with organic-inorganic hybrid materials. , 2012, , .		0

#	Article	IF	CITATIONS
523	Thermo-optical attenuator fabricated through direct UV laser writing in organic-inorganic hybrids. , 2012, , .		O
524	Metal-Organic Frameworks: Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying (Adv. Funct. Mater. 19/2015). Advanced Functional Materials, 2015, 25, 2939-2939.	14.9	0
525	Revisiting thermal-actuated integrated optics devices based on organic-inorganic hybrids. , 2015, , .		O
526	Concentration dependence of the infrared photoluminescence of Pr3+in fluoroindate glasses. , 2016, , .		0
527	Upconverting nanoparticles working as primary thermometers in different media. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C495-C495.	0.1	0
528	Frontispiece: Nearâ€Infrared Ratiometric Luminescent Thermometer Based on a New Lanthanide Silicate. Chemistry - A European Journal, 2018, 24, .	3.3	0
529	Photonic materials displaying direction modulated photoluminescence., 2019,,.		0
530	Green photonics integrated circuits based on organic–inorganic hybrids. , 2020, , 229-266.		0
531	Rýcktitelbild: Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF) (Angew. Chem. 5/2020). Angewandte Chemie, 2020, 132, 2144-2144.	2.0	0
532	Simultaneous Measurement of the Emission Quantum Yield and Local Temperature: The Illustrative Example of SrF 2 :Yb 3+ /Er 3+ Single Crystals. European Journal of Inorganic Chemistry, 2020, 2020, 1540-1540.	2.0	0
533	Editorial: Inorganic Chemistry Editor's Pick 2021. Frontiers in Chemistry, 2021, 9, 695188.	3.6	O
534	Hydrothermal synthesis and crystal structure of a new family of lanthanide phosphonates: [H3N(CH2)4NH3]Ln[hedpH2][hedpH]. Acta Crystallographica Section A: Foundations and Advances, 2006, 62, s268-s268.	0.3	0
535	Processing of Organic-Inorganic Hybrids for Integrated Optics Filters. , 2007, , .		O
536	Light Amplification For Plastic Optical Fibre Networks Based On Dye-doped Organic-inorganic Hybrids. , 2010, , .		0
537	(Invited) Shedding Light in Nanothermometry. ECS Meeting Abstracts, 2017, , .	0.0	0
538	Copper and rare earth TiO ₂ nano-heterostructure as a bifunctional material. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C515-C515.	0.1	0
539	Pr3+ Luminescence to Improve the Range, Accuracy and Sensitivity of Temperature Measurement. ECS Meeting Abstracts, 2018, , .	0.0	0
540	(Invited) On Dilemmas of Band Gap Engineering in Luminescence Thermometers. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
541	Photovoltaic spectral conversion materials: The role of sol–gel processing. , 2020, , 145-182.		0
542	Band Gap Engineering in Luminescence Thermometry – Pros and Cons. ECS Meeting Abstracts, 2020, MA2020-02, 2744-2744.	0.0	0