

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9454146/publications.pdf Version: 2024-02-01

ARTICLE IF CITATIONS Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature, 2022, 605, 69-75. 174 Metal-cation-mixed lead-less two-dimensional hybrid perovskites with high carrier mobility and 9 2.9 3 promoted light adsorption. Materials Today Physics, 2022, 27, 100769. Ultralong lifetime for fully photogenerated spin-polarized current in two-dimensional 1.1 ferromagnetic/nonmagnetic semiconductor heterostructures. Physical Review B, 2021, 103, . Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. 4 15.6 339 Nature Nanotechnology, 2021, 16, 1201-1207. Theoretical study on two dimensional group IV-VI ternary compounds with large in-plane spontaneous polarization. Computational Materials Science, 2021, 198, 110688. 1.4 Two dimensional CrGa₂Se₄: a spin-gapless ferromagnetic semiconductor with 2.8 17 6 inclined uniaxial anisotropy. Nanoscale, 2021, 13, 6024-6029. AgBiS₂ as a low-cost and eco-friendly all-inorganic photovoltaic material: nanoscale 2.2 morphology–property relationship. Nanoscale Ádvances, 2020, 2, 770-776. Magnetic twoâ€dimensional layered crystals meet with ferromagnetic semiconductors. InformaÄnÃ-8 8.5 76 MateriÃ; ly, 2020, 2, 639-655. Organic Dye Molecules Sensitization-Enhanced Photocatalytic Water-Splitting Activity of MoS₂ from First-Principles Calculations. Journal of Physical Chemistry C, 2020, 124, 9 1.5 6580-6587. Revealing the pHâ€Dependent Photoluminescence Mechanism of Graphitic C₃N₄ 10 1.3 13 Quantum Dots. Advanced Theory and Simulations, 2019, 2, 1900074. Auxetic B₄N Monolayer: A Promising 2D Material with in-Plane Negative Poisson's Ratio 11 4.0 and Large Anisotropic Mechanics. ACS Applied Materials & amp; Interfaces, 2019, 11, 33231-33237. Diisopropylammonium Bromide Based Two-Dimensional Ferroelectric Monolayer Molecular Crystal 12 with Largé In-Plane Spontaneous Polarization. Journal of the American Chemical Society, 2019, 141, 6.6 10 1452-1456. Reconciling the Debate on the Existence of Pentazole HN₅ in the Pentazolate Salt of (N₅)₆(H₃O)₃(NH₄)₄Cl. Journal of the American Chemical Society, 2019, 141, 2984-2989. 6.6 Eighteen functional monolayer metal oxides: wide bandgap semiconductors with superior oxidation 14 4.1 78 resistance and ultrahigh carrier mobility. Nanoscale Horizons, 2019, 4, 592-600. Tuning electronic structure of monolayer InP₃ in contact with graphene or Ni: effect of 1.3 a buffer layer and intrinsic In and P-vacancy. Physical Chemistry Chemical Physics, 2019, 21, 1285-1293. Lead-free low-dimensional tin halide perovskites with functional organic spacers: breaking the 16 5.2 24 charge-transport bottleneck. Journal of Materials Chemistry A, 2019, 7, 16742-16747. Rapid Discovery of Ferroelectric Photovoltaic Perovskites and Material Descriptors via Machine 4.6 Learning. Small Methods, 2019, 3, 1900360. Transition metal doping activated basal-plane catalytic activity of two-dimensional 18 1T'-ReS₂ for hydrogen evolution reaction: a first-principles calculation study. Nanoscale, 2.8 56

2019, 11, 10402-10409.

Liang

#	Article	IF	CITATIONS
19	Bi(Sb)NCa ₃ : Expansion of Perovskite Photovoltaics into All-Inorganic Anti-Perovskite Materials. Journal of Physical Chemistry C, 2019, 123, 6363-6369.	1.5	10
20	MnX (X = P, As) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. Nanoscale, 2019, 11, 4204-4209.	2.8	136
21	Two-Dimensional AuMX2 (M = Al, Ga, In; X = S, Se) Monolayers Featuring Intracrystalline Aurophilic Interactions with Novel Electronic and Optical Properties. ACS Applied Materials & Interfaces, 2018, 10, 16739-16746.	4.0	11
22	Earth-Abundant Nontoxic Titanium(IV)-based Vacancy-Ordered Double Perovskite Halides with Tunable 1.0 to 1.8 eV Bandgaps for Photovoltaic Applications. ACS Energy Letters, 2018, 3, 297-304.	8.8	314
23	Highly Promoted Carrier Mobility and Intrinsic Stability by Rolling Up Monolayer Black Phosphorus into Nanoscrolls. Journal of Physical Chemistry Letters, 2018, 9, 6847-6852.	2.1	20
24	Unravelling the Role of Topological Defects on Catalytic Unzipping of Single-Walled Carbon Nanotubes by Single Transition Metal Atom. Journal of Physical Chemistry Letters, 2018, 9, 6801-6807.	2.1	7
25	A type-I van der Waals heterobilayer of WSe ₂ /MoTe ₂ . Nanotechnology, 2018, 29, 335203.	1.3	24
26	Zero-Dimensional Organic–Inorganic Perovskite Variant: Transition between Molecular and Solid Crystal. Journal of the American Chemical Society, 2018, 140, 10456-10463.	6.6	79
27	Toward Eco-friendly and Stable Perovskite Materials for Photovoltaics. Joule, 2018, 2, 1231-1241.	11.7	224
28	Modulating the electronic and magnetic properties of bilayer borophene via transition metal atoms intercalation: from metal to half metal and semiconductor. Nanotechnology, 2018, 29, 305706.	1.3	16
29	Tin and germanium based two-dimensional Ruddlesden–Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Nanoscale, 2018, 10, 11314-11319.	2.8	73
30	Perovskite Chalcogenides with Optimal Bandgap and Desired Optical Absorption for Photovoltaic Devices. Advanced Energy Materials, 2017, 7, 1700216.	10.2	128
31	Catalytic Directional Cutting of Hexagonal Boron Nitride: The Roles of Interface and Etching Agents. Nano Letters, 2017, 17, 3208-3214.	4.5	26
32	Half-Metallicity in One-Dimensional Metal Trihydride Molecular Nanowires. Journal of the American Chemical Society, 2017, 139, 6290-6293.	6.6	54
33	Lead-Free Mixed Tin and Germanium Perovskites for Photovoltaic Application. Journal of the American Chemical Society, 2017, 139, 8038-8043.	6.6	217
34	Twoâ€Dimensional Single‣ayer Organic–Inorganic Hybrid Perovskite Semiconductors. Advanced Energy Materials, 2017, 7, 1601731.	10.2	93
35	Au ₆ S ₂ monolayer sheets: metallic and semiconducting polymorphs. Materials Horizons, 2017, 4, 1085-1091.	6.4	26
36	In- and Ga-based inorganic double perovskites with direct bandgaps for photovoltaic applications. Physical Chemistry Chemical Physics, 2017, 19, 21691-21695.	1.3	37

Liang

#	Article	IF	CITATIONS
37	Making graphene nanoribbons: a theoretical exploration. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 243-254.	6.2	13
38	Point defects in lines in single crystalline phosphorene: directional migration and tunable band gaps. Nanoscale, 2016, 8, 17801-17808.	2.8	30
39	Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism. Journal of Physical Chemistry Letters, 2015, 6, 4099-4105.	2.1	35
40	Mechanism of Transition-Metal Nanoparticle Catalytic Graphene Cutting. Journal of Physical Chemistry Letters, 2014, 5, 1192-1197.	2.1	33
41	Recent Progress and Challenges in Graphene Nanoribbon Synthesis. ChemPhysChem, 2013, 14, 47-54.	1.0	203
42	Strainâ€Induced Orientationâ€5elective Cutting of Graphene into Graphene Nanoribbons on Oxidation. Angewandte Chemie - International Edition, 2012, 51, 1161-1164.	7.2	59
43	Boron and Nitrogen Doping Induced Half-Metallicity in Zigzag Triwing Graphene Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 6195-6199.	1.5	60
44	Transitionâ€Metalâ€Catalyzed Unzipping of Singleâ€Walled Carbon Nanotubes into Narrow Graphene Nanoribbons at Low Temperature. Angewandte Chemie - International Edition, 2011, 50, 8041-8045.	7.2	61
45	Mechanically Robust Tri-Wing Graphene Nanoribbons with Tunable Electronic and Magnetic Properties. Nano Letters, 2010, 10, 494-498.	4.5	71