F B Baccaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9453928/publications.pdf Version: 2024-02-01

FRBACCARO

#	Article	IF	CITATIONS
1	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	6.0	198
2	<i>GlobalAnts</i> : a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conservation and Diversity, 2017, 10, 5-20.	1.4	119
3	Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecology and Diversity, 2014, 7, 241-253.	1.0	112
4	Air transportation, population density and temperature predict the spread of COVID-19 in Brazil. PeerJ, 2020, 8, e9322.	0.9	84
5	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	1.9	71
6	Climate mediates the effects of disturbance on ant assemblage structure. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150418.	1.2	58
7	What bite marks can tell us: Use of on-fruit tooth impressions to study seed consumer identity and consumption patterns within a rodent assemblage. Mammalian Biology, 2017, 82, 74-79.	0.8	54
8	Trade-offs between complementarity and redundancy in the use of different sampling techniques for ground-dwelling ant assemblages. Applied Soil Ecology, 2012, 56, 63-73.	2.1	51
9	Taxonomic sufficiency and indicator taxa reduce sampling costs and increase monitoring effectiveness for ants. Diversity and Distributions, 2016, 22, 111-122.	1.9	48
10	Dominance–diversity relationships in ant communities differ with invasion. Global Change Biology, 2018, 24, 4614-4625.	4.2	39
11	Pre-Columbian Floristic Legacies in Modern Homegardens of Central Amazonia. PLoS ONE, 2015, 10, e0127067.	1.1	37
12	A global database of ant species abundances. Ecology, 2017, 98, 883-884.	1.5	37
13	Limited effects of dominant ants on assemblage species richness in three Amazon forests. Ecological Entomology, 2012, 37, 1-12.	1.1	34
14	The role of environmental filtering, geographic distance and dispersal barriers in shaping the turnover of plant and animal species in Amazonia. Biodiversity and Conservation, 2020, 29, 3609-3634.	1.2	34
15	The matrix effect: how agricultural matrices shape forest fragment structure and amphibian composition. Journal of Biogeography, 2017, 44, 1911-1922.	1.4	33
16	Spatial patterns of medium and large size mammal assemblages in várzea and terra firme forests, Central Amazonia, Brazil. PLoS ONE, 2018, 13, e0198120.	1.1	33
17	Forest structure along a 600Âkm transect of natural disturbances and seasonality gradients in centralâ€southern Amazonia. Journal of Ecology, 2016, 104, 1335-1346.	1.9	30
18	Ant species distribution along a topographic gradient in a "terra-firme" forest reserve in Central Amazonia. Pesquisa Agropecuaria Brasileira, 2009, 44, 852-860.	0.9	28

#	Article	IF	CITATIONS
19	Changes in Groundâ€dwelling Ant Functional Diversity are Correlated with Waterâ€Table Level in an Amazonian <i>Terra Firme</i> Forest. Biotropica, 2013, 45, 755-763.	0.8	28
20	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	3.4	27
21	Can environmental complexity predict functional trait composition of ground-dwelling ant assemblages? A test across the Amazon Basin. Acta Oecologica, 2019, 99, 103434.	0.5	25
22	Subtle changes in elevation shift batâ€assemblage structure in Central Amazonia. Biotropica, 2018, 50, 674-683.	0.8	24
23	Do zombie ant fungi turn their hosts into light seekers?. Behavioral Ecology, 2019, 30, 609-616.	1.0	24
24	Resource distribution and soil moisture content can regulate bait control in an ant assemblage in Central Amazonian forest. Austral Ecology, 2010, 35, 274-281.	0.7	23
25	The Brazilian Program for Biodiversity Research (PPBio) Information System. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 265-274.	0.2	23
26	Complementarity among sampling methods for harvestman assemblages. Pedobiologia, 2014, 57, 37-45.	0.5	22
27	Synthesis of the first 10 years of long-term ecological research in Amazonian Forest ecosystem – implications for conservation and management. Natureza A Conservacao, 2015, 13, 3-14.	2.5	21
28	Fine roots stimulate nutrient release during early stages of leaf litter decomposition in a Central Amazon rainforest. Plant and Soil, 2021, 469, 287-303.	1.8	21
29	Check list of ground-dwelling ants (Hymenoptera: Formicidae) of the eastern Acre, Amazon, Brazil. Check List, 2012, 8, 722.	0.1	20
30	Historical stability promoted higher functional specialization and originality in Neotropical stream fish assemblages. Journal of Biogeography, 2018, 45, 1345-1354.	1.4	19
31	Variation in the production of plant tissues bearing extrafloral nectaries explains temporal patterns of ant attendance in Amazonian understorey plants. Journal of Ecology, 2020, 108, 1578-1591.	1.9	19
32	EFFECTS OF CLIMATE CHANGE ON CENTRAL AMAZONIAN FORESTS: A TWO DECADES SYNTHESIS OF MONITORING TROPICAL BIODIVERSITY. , 2020, 24, 317-335.		18
33	Evolutionary history of the little fire ant <i>Wasmannia auropunctata</i> before global invasion: inferring dispersal patterns, niche requirements and past and present distribution within its native range. Journal of Evolutionary Biology, 2016, 29, 790-809.	0.8	17
34	From a bat's perspective, protected riparian areas should be wider than defined by Brazilian laws. Journal of Environmental Management, 2019, 232, 37-44.	3.8	17
35	A Program for Monitoring Biological Diversity in the Amazon: An Alternative Perspective to Threatâ€based Monitoring. Biotropica, 2008, 40, 409-411.	0.8	15
36	Ecology shapes metabolic and life history scalings in termites. Ecological Entomology, 2017, 42, 115-124.	1.1	15

#	Article	IF	CITATIONS
37	Bird assemblages on Amazonian river islands: Patterns of species diversity and composition. Biotropica, 2019, 51, 903-912.	0.8	13
38	Estimating density of ant nests using distance sampling. Insectes Sociaux, 2013, 60, 103-110.	0.7	12
39	Urban waste disposal explains the distribution of Black Vultures (<i>Coragyps atratus</i>) in an Amazonian metropolis: management implications for birdstrikes and urban planning. PeerJ, 2018, 6, e5491.	0.9	11
40	Effectiveness of genera as a higher-taxon substitute for species in ant biodiversity analyses is not affected by sampling technique. Biodiversity and Conservation, 2018, 27, 3425-3445.	1.2	10
41	Eighty-four per cent of all Amazonian arboreal plant individuals are useful to humans. PLoS ONE, 2021, 16, e0257875.	1.1	10
42	Use of Complementary Methods to Sample Bats in the Amazon. Acta Chiropterologica, 2022, 23, .	0.2	10
43	Busy Nights: High Seed Dispersal by Crickets in a Neotropical Forest. American Naturalist, 2016, 188, E126-E133.	1.0	9
44	Limited effects of low-intensity forest management on ant assemblages in southwestern Amazonian forests. Biodiversity and Conservation, 2017, 26, 2435-2451.	1.2	9
45	The Program for Biodiversity Research in Brazil: The role of regional networks for biodiversity knowledge, dissemination, and conservation. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20201604.	0.3	9
46	Ant diversity studies in Brazil: an overview of the myrmecological research in a megadiverse country. Insectes Sociaux, 2022, 69, 105-121.	0.7	9
47	Efeitos da distância entre iscas nas estimativas de abundância e riqueza de formigas em uma floresta de terra-firme na Amazônia Central. Acta Amazonica, 2011, 41, 115-122.	0.3	8
48	Genomic Organization Under Different Environmental Conditions: <i>Hoplosternum Littorale</i> as a Model. Zebrafish, 2016, 13, 197-208.	0.5	8
49	Temporal and spatial gradients of humidity shape the occurrence and the behavioral manipulation of ants infected by entomopathogenic fungi in Central Amazon. Fungal Ecology, 2019, 42, 100871.	0.7	8
50	Dissecting bird diversity in the Pantepui area of endemism, northern South America. Journal of Ornithology, 2018, 159, 1073-1086.	0.5	7
51	Multi-taxa Surveys: Integrating Ecosystem Processes and User Demands. , 2014, , 177-187.		7
52	Water table level and soil texture are important drivers of dung beetle diversity in Amazonian lowland forests. Applied Soil Ecology, 2022, 170, 104260.	2.1	7
53	For emergency only: terrestrial feeding in Coimbra-Filho's titis reflects seasonal arboreal resource availability. Primates, 2021, 62, 199-206.	0.7	6
54	Marked Differences in Butterfly Assemblage Composition between Forest Types in Central Amazonia, Brazil. Forests, 2021, 12, 942.	0.9	6

#	Article	IF	CITATIONS
55	Distribution of epigeic and hypogeic ants (Hymenoptera: Formicidae) in ombrophilous forests in the Brazilian Amazon. Sociobiology, 2020, 67, 186.	0.2	6
56	Connecting Amazonian historical biogeography and local assemblages of understorey birds: Recurrent guild proportionality within areas of endemism. Journal of Biogeography, 2022, 49, 324-338.	1.4	6
57	Living in a tropical concrete jungle: diversity and abundance variation in a parrot assemblage (Aves,) Tj ETQq1	1 0.784314 1.1	rgBT /Overlo
58	Optimizing survey methods for spiders and harvestmen assemblages in an Amazonian upland forest. Pedobiologia, 2018, 67, 35-44.	0.5	5
59	IgapÃ ³ seed patches: a potentially key resource for terrestrial vertebrates in a seasonally flooded forest of central Amazonia. Biological Journal of the Linnean Society, 0, , .	0.7	5
60	Arboreal ant abundance tracks primary productivity in an Amazonian whitewater river system. Ecosphere, 2019, 10, e02902.	1.0	5
61	The Amazonasâ€ŧrap: a new method for sampling plantâ€inhabiting arthropod communities in tropical forest understory. Entomologia Experimentalis Et Applicata, 2019, 167, 534-543.	0.7	5
62	Sucessional trajetories of bird assemblages in amazonian secondary forests: Perspectives from complementary biodiversity dimensions. Forest Ecology and Management, 2021, 483, 118731.	1.4	5
63	Soil fertility and anthropogenic disturbances drive mammal species richness and assemblage composition on tropical fluvial islands. Austral Ecology, 2021, 46, 792-801.	0.7	5
64	Occurrence of triatomines (Hemiptera: Reduviidae) in domestic and natural environments in Novo Remanso, Itacoatiara, Amazonas, Brazil. Revista Da Sociedade Brasileira De Medicina Tropical, 2019, 52, e20190063.	0.4	5
65	Direct and indirect effects of geographic and environmental factors on ant beta diversity across Amazon basin. Oecologia, 2022, 198, 193-203.	0.9	5
66	Juggling options: Manipulation ease determines primate optimal fruitâ€size choice. Biotropica, 2020, 52, 1275-1285.	0.8	4
67	Windthrows promote higher diversity of saproxylic beetles (Coleoptera: Passalidae) in a Central Amazon forest. Insect Conservation and Diversity, 0, , .	1.4	4
68	Aliens in the backyard: Did the American bullfrog conquer the habitat of native frogs in the semi-deciduous Atlantic Forest?. Herpetological Journal, 2020, , 93-98.	0.3	4
69	Effect of Structural Variation of Dead Trunks on Passalid (Coleoptera: Passalidae) Assemblages in Central Amazonian Campinaranas. Neotropical Entomology, 2020, 49, 337-346.	0.5	3
70	Seasonal fluctuation of groundwater level influences local litterâ€dwelling ant richness, composition, and colonization in the Amazon rainforest. Ecological Entomology, 2021, 46, 220-231.	1.1	3
71	Ants of the State of ParÃ _i , Brazil: a historical and comprehensive dataset of a key biodiversity hotspot in the Amazon Basin. Zootaxa, 2021, 5001, 1-83.	0.2	3
72	Productivity correlates positively with mammalian diversity independently of the species' feeding guild, body mass, or the vertical strata explored by the species. Mammal Review, 2022, 52, 377-391.	2.2	3

#	Article	IF	CITATIONS
73	A largeâ€scale assessment of ant diversity across the Brazilian Amazon Basin: integrating geographic, ecological and morphological drivers of sampling bias. Ecography, 2022, 2022, .	2.1	3
74	Composição e riqueza de formigas (Hymenoptera: Formicidae) em savana e ambientes associados de Roraima. Agro@mbiente on-line, 2010, 4, 1.	0.2	2
75	Sedimental Journey: Soil Fertility of Fluvial Islands Increases with Proximity to An Amazonian White-Water River. Wetlands, 2021, 41, 1.	0.7	2
76	Assessing the efficacy of higherâ€ŧaxon approach for ant species surveys to improve biodiversity inventories. Animal Conservation, 2022, 25, 370-381.	1.5	2
77	Forest fragments, primary and secondary forests harbour similar arthropod assemblages after 40 years of landscape regeneration in the Central Amazon. Agricultural and Forest Entomology, 2022, 24, 178-188.	0.7	2
78	The bitter end: primate avoidance of caterpillar-infested trees in a central Amazon flooded forest. Canadian Journal of Zoology, 2019, 97, 181-186.	0.4	1
79	Relações alométricas entre os tamanhos de sementes artificiais removidas e de formigas em um fragmento florestal na Amazônia Central. Boletim Do Museu Paraense EmÃłio Goeldi Ciências Naturais (Impresso), 2020, 15, 155-164.	0.1	1
80	Editorial: The Ecology, Evolution, and Preservation of Biodiversity in Amazonian Floodplain Ecosystems. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	1
81	BEETLE ASSEMBLAGE COMPOSITION (COLEOPTERA) ACROSS THE BORBOREMA PLATEAU IN NORTHEASTERN BRAZIL. Revista Caatinga, 2022, 35, 148-159.	0.3	1
82	Modeling potential invasion of stored-product pest Cryptamorpha desjardinsii (Guérin-Méneville,) Tj ETQq0 (Entomology, 2022, 25, 101891.	0 0 rgBT /0 0.4	Overlock 10 7 1
83	Competitive Interaction between Two Ant Species Facilitates Egg Hatching in Yellow-Spotted Amazon River Turtles (Podocnemis unifilis). South American Journal of Herpetology, 2021, 20, .	0.5	0
84	The behavioural ecology behind anti-predator mechanisms: diversity, ontogenetic changes and sexual differences in anuran defence behaviours. Ethology Ecology and Evolution, 0, , 1-11.	0.6	0
85	Corrigendum to: "Do zombie ant fungi turn their hosts into light seekers?― Behavioral Ecology, 2021, 32, 199-199.	1.0	0