Martin Elsner

List of Publications by Citations

Source: https://exaly.com/author-pdf/9453787/martin-elsner-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

144 6,205 40 papers citations h-index

150 7,310 ext. citations

8.1 avg, IF

6.15 L-index

g-index

#	Paper	IF	Citations
144	Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. <i>Science</i> , 2013 , 341, 752-8	33.3	597
143	A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	428
142	Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	315
141	Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 378, 283-300	4.4	277
140	Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. <i>Journal of Environmental Monitoring</i> , 2010 , 12, 2005	5-31	265
139	Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 403, 2471-91	4.4	193
138	New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE. <i>Environmental Science & amp; Technology</i> , 2005 , 39, 1018-29	10.3	174
137	Methods for the analysis of submicrometer- and nanoplastic particles in the environment. <i>TrAC</i> - <i>Trends in Analytical Chemistry</i> , 2019 , 112, 52-65	14.6	164
136	Biodegradation: Updating the concepts of control for microbial cleanup in contaminated aquifers. <i>Environmental Science & Environmental Science & Envi</i>	10.3	155
135	Quantitative Survey and Structural Classification of Hydraulic Fracturing Chemicals Reported in Unconventional Gas Production. <i>Environmental Science & Environmental Science </i>	10.3	119
134	Mechanisms and products of surface-mediated reductive dehalogenation of carbon tetrachloride by Fe(II) on goethite. <i>Environmental Science & Environmental Science & Environme</i>	10.3	106
133	Raman microspectroscopy as a tool for microplastic particle analysis. <i>TrAC - Trends in Analytical Chemistry</i> , 2018 , 109, 214-226	14.6	103
132	Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 13184-9	11.5	101
131	Macropore flow of old water revisited: experimental insights from a tile-drained hillslope. <i>Hydrology and Earth System Sciences</i> , 2013 , 17, 103-118	5.5	99
130	Insight into methyl tert-butyl ether (MTBE) stable isotope fractionation from abiotic reference experiments. <i>Environmental Science & Environmental Sc</i>	10.3	95
129	Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements: Caffeines, n-Alkanes, Fatty Acid Methyl Esters, Glycines, L-Valines, Polyethylenes, and Oils. <i>Analytical Chemistry</i> , 2016 , 88, 4294-302	7.8	91
128	Compound-specific isotope analysis (CSIA) of micropollutants in the environment - current developments and future challenges. <i>Current Opinion in Biotechnology</i> , 2016 , 41, 60-72	11.4	89

(2005-2011)

127	Compound-specific chlorine isotope analysis: a comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study. <i>Analytical Chemistry</i> , 2011 , 83, 7624-34	7.8	86	
126	Identifying abiotic chlorinated ethene degradation: characteristic isotope patterns in reaction products with nanoscale zero-valent iron. <i>Environmental Science & Environmental Science & Environment</i>	10.3	83	
125	C and N isotope fractionation suggests similar mechanisms of microbial atrazine transformation despite involvement of different enzymes (AtzA and TrzN). <i>Environmental Science & amp; Technology</i> , 2009 , 43, 8079-85	10.3	79	
124	Indications of Transformation Products from Hydraulic Fracturing Additives in Shale-Gas Wastewater. <i>Environmental Science & Environmental Science & E</i>	10.3	73	
123	Pathway dependent isotopic fractionation during aerobic biodegradation of 1,2-dichloroethane. <i>Environmental Science & Environmental &</i>	10.3	66	
122	Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating bacteria: insights from dual element isotope analysis (13C/12C, 37Cl/35Cl). <i>Environmental Science & Environmental Science</i>	10.3	65	
121	Isotopic evidence suggests different initial reaction mechanisms for anaerobic benzene biodegradation. <i>Environmental Science & Environmental Science </i>	10.3	64	
120	Modeling chlorine isotope trends during sequential transformation of chlorinated ethenes. <i>Environmental Science & Environmental Science & Environment</i>	10.3	62	
119	Natural Gas Residual Fluids: Sources, Endpoints, and Organic Chemical Composition after Centralized Waste Treatment in Pennsylvania. <i>Environmental Science & Endpoints</i> , 49, 8347-	.55.3	61	
118	Combined C and Cl isotope effects indicate differences between corrinoids and enzyme (Sulfurospirillum multivorans PceA) in reductive dehalogenation of tetrachloroethene, but not trichloroethene. <i>Environmental Science & Description (Science & Descript</i>	10.3	59	
117	Carbon isotope fractionation in the reductive dehalogenation of carbon tetrachloride at iron (hydr)oxide and iron sulfide minerals. <i>Environmental Science & Environmental & Environme</i>	10.3	56	
116	Effects of trace element concentration on enzyme controlled stable isotope fractionation during aerobic biodegradation of toluene. <i>Environmental Science & Environmental Scie</i>	10.3	56	
115	C, N, and H isotope fractionation of the herbicide isoproturon reflects different microbial transformation pathways. <i>Environmental Science & Environmental Science & Environm</i>	10.3	51	
114	Precise and accurate compound specific carbon and nitrogen isotope analysis of atrazine: critical role of combustion oven conditions. <i>Environmental Science & Environmental S</i>	10.3	51	
113	1,1,2,2-tetrachloroethane reactions with OH-, Cr(II), granular iron, and a copper-iron bimetal: insights from product formation and associated carbon isotope fractionation. <i>Environmental Science & Environmental Science & </i>	10.3	51	
112	Isotopic fractionation of methyl tert-butyl ether suggests different initial reaction mechanisms during aerobic biodegradation. <i>Environmental Science & Environmental Science</i>	10.3	46	
111	Nanoplastic Analysis by Online Coupling of Raman Microscopy and Field-Flow Fractionation Enabled by Optical Tweezers. <i>Analytical Chemistry</i> , 2020 , 92, 5813-5820	7.8	45	
110	Carbon isotopic fractionation during aerobic vinyl chloride degradation. <i>Environmental Science</i> & amp; Technology, 2005 , 39, 1064-70	10.3	45	

109	Evaluating chlorine isotope effects from isotope ratios and mass spectra of polychlorinated molecules. <i>Analytical Chemistry</i> , 2008 , 80, 4731-40	7.8	43
108	Dual (C, H) isotope fractionation in anaerobic low molecular weight (poly)aromatic hydrocarbon (PAH) degradation: potential for field studies and mechanistic implications. <i>Environmental Science & Environmental Science</i>	10.3	41
107	Potential for identifying abiotic chloroalkane degradation mechanisms using carbon isotopic fractionation. <i>Environmental Science & Environmental Scie</i>	10.3	41
106	Cytochrome P450-catalyzed dealkylation of atrazine by Rhodococcus sp. strain NI86/21 involves hydrogen atom transfer rather than single electron transfer. <i>Dalton Transactions</i> , 2014 , 43, 12175-86	4.3	40
105	Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation. <i>Molecules</i> , 2014 , 19, 6450-73	4.8	40
104	Carbon and nitrogen isotope analysis of atrazine and desethylatrazine at sub-microgram per liter concentrations in groundwater. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 2857-67	4.4	40
103	C and Cl isotope fractionation of 1,2-dichloroethane displays unique IIIC/III patterns for pathway identification and reveals surprising C-Cl bond involvement in microbial oxidation. <i>Environmental Science & Environmental </i>	10.3	39
102	Dermal Tattoo Biosensors for Colorimetric Metabolite Detection. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10506-10513	16.4	38
101	Cl and C isotope analysis to assess the effectiveness of chlorinated ethene degradation by zero-valent iron: Evidence from dual element and product isotope values. <i>Applied Geochemistry</i> , 2013 , 32, 175-183	3.5	38
100	Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol. <i>Environmental Microbiology</i> , 2017 , 19, 968-981	5.2	37
99	C and N isotope fractionation during biodegradation of the pesticide metabolite 2,6-dichlorobenzamide (BAM): potential for environmental assessments. <i>Environmental Science & Environmental Science</i>	10.3	35
98	A Critical Review of State-of-the-Art and Emerging Approaches to Identify Fracking-Derived Gases and Associated Contaminants in Aquifers. <i>Environmental Science & Emp; Technology</i> , 2019 , 53, 1063-107	7 ^{10.3}	34
97	Compound-specific isotope analysis of benzotriazole and its derivatives. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 2843-56	4.4	31
96	Combined isotope and enantiomer analysis to assess the fate of phenoxy acids in a heterogeneous geologic setting at an old landfill. <i>Water Research</i> , 2013 , 47, 637-49	12.5	30
95	Small and reproducible isotope effects during methylation with trimethylsulfonium hydroxide (TMSH): a convenient derivatization method for isotope analysis of negatively charged molecules. <i>Analytical Chemistry</i> , 2010 , 82, 2013-9	7.8	29
94	C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site. <i>Journal of Hazardous Materials</i> , 2015 , 299, 747-54	12.8	28
93	Surface-enhanced Raman spectroscopy of microorganisms: limitations and applicability on the single-cell level. <i>Analyst, The</i> , 2019 , 144, 943-953	5	28
92	UV-Sensitive Wearable Devices for Colorimetric Monitoring of UV Exposure. <i>Advanced Optical Materials</i> , 2020 , 8, 1901969	8.1	27

91	Freezing to preserve groundwater samples and improve headspace quantification limits of water-soluble organic contaminants for carbon isotope analysis. <i>Analytical Chemistry</i> , 2006 , 78, 7528-34	₁ 7.8	27
90	Distinct Dual C-Cl Isotope Fractionation Patterns during Anaerobic Biodegradation of 1,2-Dichloroethane: Potential To Characterize Microbial Degradation in the Field. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	26
89	Carbon and Chlorine Isotope Fractionation Patterns Associated with Different Engineered Chloroform Transformation Reactions. <i>Environmental Science & Environmental Science & </i>	10.3	26
88	Small (13)C/(12)C fractionation contrasts with large enantiomer fractionation in aerobic biodegradation of phenoxy acids. <i>Environmental Science & Environmental Science & Env</i>	10.3	26
87	Rate-dependent carbon and nitrogen kinetic isotope fractionation in hydrolysis of isoproturon. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	26
86	Defining lower limits of biodegradation: atrazine degradation regulated by mass transfer and maintenance demand in Arthrobacter aurescens TC1. <i>ISME Journal</i> , 2019 , 13, 2236-2251	11.9	25
85	Solid-phase extraction method for stable isotope analysis of pesticides from large volume environmental water samples. <i>Analyst, The</i> , 2019 , 144, 2898-2908	5	25
84	C & N isotope analysis of diclofenac to distinguish oxidative and reductive transformation and to track commercial products. <i>Environmental Science & Environmental & </i>	10.3	25
83	Current Perspectives on the Mechanisms of Chlorohydrocarbon Degradation in Subsurface Environments: Insight from Kinetics, Product Formation, Probe Molecules, and Isotope Fractionation. <i>ACS Symposium Series</i> , 2011 , 407-439	0.4	25
82	Sorption properties and behaviour at laboratory scale of selected pharmaceuticals using batch experiments. <i>Journal of Contaminant Hydrology</i> , 2019 , 225, 103500	3.9	24
81	Controls of event-based pesticide leaching in natural soils: A systematic study based on replicated field scale irrigation experiments. <i>Journal of Hydrology</i> , 2014 , 512, 528-539	6	24
80	13C/12C and 15N/14N isotope analysis to characterize degradation of atrazine: evidence from parent and daughter compound values. <i>Environmental Science & Environmental Scienc</i>	10.3	23
79	Intramolecular carbon and nitrogen isotope analysis by quantitative dry fragmentation of the phenylurea herbicide isoproturon in a combined injector/capillary reactor prior to GC separation. <i>Analytical Chemistry</i> , 2007 , 79, 8399-405	7.8	23
78	Chlorinated Ethene Reactivity with Vitamin B12Is Governed by Cobalamin Chloroethylcarbanions as Crossroads of Competing Pathways. <i>ACS Catalysis</i> , 2018 , 8, 3054-3066	13.1	22
77	Isotope Fractionation Pinpoints Membrane Permeability as a Barrier to Atrazine Biodegradation in Gram-negative Polaromonas sp. Nea-C. <i>Environmental Science & Environmental S</i>	10.3	22
76	Reductive Outer-Sphere Single Electron Transfer Is an Exception Rather than the Rule in Natural and Engineered Chlorinated Ethene Dehalogenation. <i>Environmental Science & Dehalogy</i> , 2017 , 51, 9663-9673	10.3	22
75	Rate-Limiting Mass Transfer in Micropollutant Degradation Revealed by Isotope Fractionation in Chemostat. <i>Environmental Science & Environmental Scien</i>	10.3	22
74	Compound-Specific Chlorine Isotope Analysis of Tetrachloromethane and Trichloromethane by Gas Chromatography-Isotope Ratio Mass Spectrometry vs Gas Chromatography-Quadrupole Mass Spectrometry: Method Development and Evaluation of Precision and Trueness. <i>Analytical Chemistry</i>	7.8	21

73	Implementation of an open source algorithm for particle recognition and morphological characterisation for microplastic analysis by means of Raman microspectroscopy. <i>Analytical Methods</i> , 2019 , 11, 3483-3489	3.2	20
72	Model complexity needed for quantitative analysis of high resolution isotope and concentration data from a toluene-pulse experiment. <i>Environmental Science & Environmental Sc</i>	10.3	20
71	Carbon Isotope Analysis to Evaluate Nanoscale Fe(O) Treatment at a Chlorohydrocarbon Contaminated Site. <i>Ground Water Monitoring and Remediation</i> , 2010 , 30, 79-95	1.4	19
70	Characteristic isotope fractionation patterns in s-triazine degradation have their origin in multiple protonation options in the s-triazine hydrolase TrzN. <i>Environmental Science & Environmental Sci</i>	10.3	18
69	Gas chromatography/isotope ratio mass spectrometry of recalcitrant target compounds: performance of different combustion reactors and strategies for standardization. <i>Rapid Communications in Mass Spectrometry</i> , 2012 , 26, 1053-60	2.2	18
68	Quantitative site-specific (2)H NMR investigation of MTBE: potential for assessing contaminant sources and fate. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	18
67	New Evaluation Scheme for Two-Dimensional Isotope Analysis to Decipher Biodegradation Processes: Application to Groundwater Contamination by MTBE. <i>Environmental Science & Technology</i> , 2005 , 39, 7344-7344	10.3	18
66	Mechanistic Dichotomy in Bacterial Trichloroethene Dechlorination Revealed by Carbon and Chlorine Isotope Effects. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	17
65	Enantioselective stable isotope analysis (ESIA) of polar herbicides. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 2825-31	4.4	16
64	Compound-Specific Stable Isotope Fractionation of Pesticides and Pharmaceuticals in a Mesoscale Aquifer Model. <i>Environmental Science & Environmental </i>	10.3	16
63	Contrasting dual (C, Cl) isotope fractionation offers potential to distinguish reductive chloroethene transformation from breakdown by permanganate. <i>Science of the Total Environment</i> , 2017 , 596-597, 16	9 ¹ 177	15
62	Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS. <i>Analytical and Bioanalytical Chemistry</i> , 2015 , 407, 5249-60	4.4	15
61	Simple Generation of Suspensible Secondary Microplastic Reference Particles via Ultrasound Treatment. <i>Frontiers in Chemistry</i> , 2020 , 8, 169	5	15
60	Response and recovery of a pristine groundwater ecosystem impacted by toluene contamination - A meso-scale indoor aquifer experiment. <i>Journal of Contaminant Hydrology</i> , 2017 , 207, 17-30	3.9	15
59	Triple-element compound-specific stable isotope analysis of 1,2-dichloroethane for characterization of the underlying dehalogenation reaction in two Dehalococcoides mccartyi strains. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	15
58	Porphyrinic MOF Film for Multifaceted Electrochemical Sensing. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20551-20557	16.4	15
57	Experimental Determination of Isotope Enrichment Factors - Bias from Mass Removal by Repetitive Sampling. <i>Environmental Science & Environmental Science & Environment Factors - Bias from Mass Removal by Repetitive Sampling. <i>Environmental Science & Environment Factors - Bias from Mass Removal by Repetitive Sampling & Environment Factors - Bias from Mass Removal by Repetitive Sampling & Environmental Science & Environment Factors - Bias from Mass Removal by Repetitive Sampling & Environmental Science & Env</i></i>	10.3	14
56	Dermal Tattoo Biosensors for Colorimetric Metabolite Detection. <i>Angewandte Chemie</i> , 2019 , 131, 1061	63.10062	2314

(2018-2013)

55	Direct experimental evidence of non-first order degradation kinetics and sorption-induced isotopic fractionation in a mesoscale aquifer: 13C/12C analysis of a transient toluene pulse. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	14	
54	C- and N-Isotope Analysis of Desphenylchloridazon by Liquid Chromatography-Isotope-Ratio Mass Spectrometry and Derivatization Gas Chromatography-Isotope-Ratio Mass Spectrometry. <i>Analytical Chemistry</i> , 2019 , 91, 3412-3420	7.8	12	
53	Substrate-dependent CO2 fixation in heterotrophic bacteria revealed by stable isotope labelling. <i>FEMS Microbiology Ecology</i> , 2020 , 96,	4.3	12	
52	TUM-ParticleTyper: A detection and quantification tool for automated analysis of (Microplastic) particles and fibers. <i>PLoS ONE</i> , 2020 , 15, e0234766	3.7	12	
51	Exploring Trends of C and N Isotope Fractionation to Trace Transformation Reactions of Diclofenac in Natural and Engineered Systems. <i>Environmental Science & Environmental Sc</i>	10.3	12	
50	Intrinsic potential for immediate biodegradation of toluene in a pristine, energy-limited aquifer. <i>Biodegradation</i> , 2014 , 25, 325-36	4.1	12	
49	Reviews and syntheses: Heterotrophic fixation of inorganic carbon lignificant but invisible flux in environmental carbon cycling. <i>Biogeosciences</i> , 2021 , 18, 3689-3700	4.6	12	
48	Biodegradation and photooxidation of phenolic compounds in soil-A compound-specific stable isotope approach. <i>Chemosphere</i> , 2019 , 230, 210-218	8.4	11	
47	Compound-specific chlorine isotope fractionation in biodegradation of atrazine. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 792-801	4.3	11	
46	13C and B7Cl Isotope Fractionation To Characterize Aerobic vs Anaerobic Degradation of Trichloroethylene. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 202-208	11	11	
45	Chronic d-serine supplementation impairs insulin secretion. <i>Molecular Metabolism</i> , 2018 , 16, 191-202	8.8	11	
44	Predicting pesticide attenuation in a fractured aquifer using lumped-parameter models. <i>Ground Water</i> , 2013 , 51, 276-85	2.4	11	
43	Compound-Specific Chlorine Isotope Analysis of the Herbicides Atrazine, Acetochlor, and Metolachlor. <i>Analytical Chemistry</i> , 2019 , 91, 14290-14298	7.8	10	
42	Reductive Dehalogenation of Trichloromethane by Two Different Dehalobacter restrictus Strains Reveal Opposing Dual Element Isotope Effects. <i>Environmental Science & Environmental Science & Environme</i>	32 ⁻² 3 ³ 43	3 ¹⁰	
41	Adsorbing vs. Nonadsorbing Tracers for Assessing Pesticide Transport in Arable Soils. <i>Vadose Zone Journal</i> , 2018 , 17, 170033	2.7	10	
40	High Permeation Rates in Liposome Systems Explain Rapid Glyphosate Biodegradation Associated with Strong Isotope Fractionation. <i>Environmental Science & Environmental Science</i>	10.3	10	
39	Introduction of a new platform for parameter estimation of kinetically complex environmental systems. <i>Environmental Modelling and Software</i> , 2017 , 98, 12-20	5.2	9	
38	Stable-isotope Raman microspectroscopy for the analysis of soil organic matter. <i>Analytical and Bioanalytical Chemistry</i> , 2018 , 410, 923-931	4.4	9	

37	Delineating spring recharge areas in a fractured sandstone aquifer (Luxembourg) based on pesticide mass balance. <i>Hydrogeology Journal</i> , 2013 , 21, 799-812	3.1	9
36	Monitoring Microbial Mineralization Using Reverse Stable Isotope Labeling Analysis by Mid-Infrared Laser Spectroscopy. <i>Environmental Science & Enp.; Technology</i> , 2017 , 51, 11876-11883	10.3	9
35	Pre-drilling background groundwater quality in the Deep River Triassic Basin of central North Carolina, USA. <i>Applied Geochemistry</i> , 2015 , 60, 3-13	3.5	9
34	Response to Comment on 🗓,1,2,2-Tetrachloroethane Reactions with OH-, Cr(II), Granular Iron, and a CopperIron Bimetal: Insights from Product Formation and Associated Carbon Isotope Fractionation[]Environmental Science & Description (1949-7950)	10.3	9
33	Methodological Advances to Study Contaminant Biotransformation: New Prospects for Understanding and Reducing Environmental Persistence?. <i>ACS ES&T Water</i> , 2021 , 1, 1541-1554		9
32	Phenotypic heterogeneity as key factor for growth and survival under oligotrophic conditions. <i>Environmental Microbiology</i> , 2020 , 22, 3339-3356	5.2	8
31	Mass Transfer Limitation during Slow Anaerobic Biodegradation of 2-Methylnaphthalene. <i>Environmental Science & Environmental &</i>	10.3	8
30	Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes. <i>Journal of Contaminant Hydrology</i> , 2015 , 182, 173-82	3.9	8
29	Asc-1 regulates white versus beige adipocyte fate in a subcutaneous stromal cell population. <i>Nature Communications</i> , 2021 , 12, 1588	17.4	7
28	Mass-Transfer-Limited Biodegradation at Low Concentrations-Evidence from Reactive Transport Modeling of Isotope Profiles in a Bench-Scale Aquifer. <i>Environmental Science & Environmental Science & En</i>	10.3	7
27	Modeling of Contaminant Biodegradation and Compound-Specific Isotope Fractionation in Chemostats at Low Dilution Rates. <i>Environmental Science & Environmental Science & Envir</i>	10.3	7
26	Nitrate Removal by a Novel Lithoautotrophic Nitrate-Reducing, Iron(II)-Oxidizing Culture Enriched from a Pyrite-Rich Limestone Aquifer. <i>Applied and Environmental Microbiology</i> , 2021 , 87, e0046021	4.8	7
25	Comment on the German draft legislation on hydraulic fracturing: the need for an accurate state of knowledge and for independent scientific research. <i>Environmental Science & Environmental &</i>	10.3	6
24	Dual element (CCl) isotope approach to distinguish abiotic reactions of chlorinated methanes by Fe(0) and by Fe(II) on iron minerals at neutral and alkaline pH. <i>Chemosphere</i> , 2018 , 206, 447-456	8.4	6
23	Calibration bias of experimentally determined chlorine isotope enrichment factors: the need for a two-point calibration in compound-specific chlorine isotope analysis. <i>Rapid Communications in Mass Spectrometry</i> , 2017 , 31, 68-74	2.2	6
22	Principles and Mechanisms of Isotope Fractionation 2009 , 43-77		6
21	Toward Improved Accuracy in Chlorine Isotope Analysis: Synthesis Routes for In-House Standards and Characterization via Complementary Mass Spectrometry Methods. <i>Analytical Chemistry</i> , 2019 , 91, 12290-12297	7.8	4
20	Dual-Element Isotope Analysis of Desphenylchloridazon to Investigate Its Environmental Fate in a Systematic Field Study: A Long-Term Lysimeter Experiment. <i>Environmental Science & amp; Technology</i> , 2020 , 54, 3929-3939	10.3	4

19	Solvent stress-induced changes in membrane fatty acid composition of denitrifying bacteria reduce the extent of nitrogen stable isotope fractionation during denitrification. <i>Geochimica Et Cosmochimica Acta</i> , 2018 , 239, 275-283	5.5	4
18	NO and natural organic matter affect both soot aggregation behavior and sorption of S-metolachlor. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 1729-1735	4.3	3
17	Response to Comment on New Evaluation Scheme for Two-Dimensional Isotope Analysis to Decipher Biodegradation Processes: Application to Groundwater Contamination by MTBEII Environmental Science & Env	10.3	3
16	Automated, flow-based chemiluminescence microarray immunoassay for the rapid multiplex detection of IgG antibodies to SARS-CoV-2 in human serum and plasma (CoVRapid CL-MIA). <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 5619-5632	4.4	3
15	Which particles to select, and if yes, how many?: Subsampling methods for Raman microspectroscopic analysis of very small microplastic. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 3625-3641	4.4	3
14	Isothermal haRPA detection of bla in bacterial isolates from water samples and comparison with qPCR. <i>Analytical Methods</i> , 2021 , 13, 552-557	3.2	3
13	A robust optimization technique for analysis of multi-tracer experiments. <i>Journal of Contaminant Hydrology</i> , 2019 , 224, 103481	3.9	2
12	Hydrochemical and operational parameters driving carbonate scale kinetics at geothermal facilities in the Bavarian Molasse Basin. <i>Geothermal Energy</i> , 2020 , 8,	3.3	2
11	Macroporous epoxy-based monoliths for rapid quantification of Pseudomonas aeruginosa by adsorption elution method optimized for qPCR. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 8185-8	8 119 5	2
10	Magnitude of Diffusion- and Transverse Dispersion-Induced Isotope Fractionation of Organic Compounds in Aqueous Systems. <i>Environmental Science & Environmental Science & Envi</i>	10.3	2
9	Fate of Four Herbicides in an Irrigated Field Cropped with Corn: Lysimeter Experiments. <i>Procedia Earth and Planetary Science</i> , 2015 , 13, 158-161		1
8	Protocol to Investigate Volatile Aromatic Hydrocarbon Degradation with Purge and Trap Coupled to a Gas Chromatograph/Isotope Ratio Mass Spectrometer. <i>Springer Protocols</i> , 2015 , 259-288	0.3	1
7	Nondestructive Chemical Analysis of the Iron-Containing Protein Ferritin Using Raman Microspectroscopy. <i>Applied Spectroscopy</i> , 2020 , 74, 193-203	3.1	1
6	Isotope fractionation of micropollutants during large-volume extraction: heads-up from a critical method evaluation for atrazine, desethylatrazine and 2,6-dichlorobenzamide at low ng/L concentrations in groundwater. <i>Isotopes in Environmental and Health Studies</i> , 2021 , 57, 35-52	1.5	1
5	A Chip-Based Colony Fusion Recombinase Polymerase Amplification Assay for Monitoring of Antimicrobial Resistance Genes and Their Carrying Species in Surface Water. <i>ACS ES&T Water</i> , 2021 , 1, 584-594		1
4	Triple-Element Compound-Specific Stable Isotope Analysis (3D-CSIA): Added Value of Cl Isotope Ratios to Assess Herbicide Degradation. <i>Environmental Science & Environmental S</i>	10.3	1
3	Isotope Effects on the Vaporization of Organic Compounds from an Aqueous Solution-Insight from Experiment and Computations <i>Journal of Physical Chemistry B</i> , 2021 , 125, 13868-13885	3.4	1
2	Microplastic sampling from wastewater treatment plant effluents: Best-practices and synergies between thermoanalytical and spectroscopic analysis <i>Water Research</i> , 2022 , 219, 118549	12.5	1

Influence of changes in microbial cell membrane composition on isotopic fractionation of nitrate during denitrification. *E3S Web of Conferences*, **2019**, 98, 01051

0.5