Jeroen P Roose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9453520/publications.pdf Version: 2024-02-01

IEDOEN PROOSE

#	Article	IF	CITATIONS
1	Digital Signaling and Hysteresis Characterize Ras Activation in Lymphoid Cells. Cell, 2009, 136, 337-351.	28.9	362
2	A Diacylglycerol-Protein Kinase C-RasGRP1 Pathway Directs Ras Activation upon Antigen Receptor Stimulation of T Cells. Molecular and Cellular Biology, 2005, 25, 4426-4441.	2.3	180
3	Unusual Interplay of Two Types of Ras Activators, RasCRP and SOS, Establishes Sensitive and Robust Ras Activation in Lymphocytes. Molecular and Cellular Biology, 2007, 27, 2732-2745.	2.3	151
4	Response and resistance to MEK inhibition in leukaemias initiated by hyperactive Ras. Nature, 2009, 461, 411-414.	27.8	141
5	Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science, 2019, 366, 109-115.	12.6	127
6	STIM1, PKC-δ and RasGRP set a threshold for proapoptotic Erk signaling during B cell development. Nature Immunology, 2011, 12, 425-433.	14.5	118
7	RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. Cancer Cell, 2017, 31, 685-696.e6.	16.8	113
8	T Cell Receptor-Independent Basal Signaling via Erk and Abl Kinases Suppresses RAG Gene Expression. PLoS Biology, 2003, 1, e53.	5.6	88
9	Tonic Signals: Why Do Lymphocytes Bother?. Trends in Immunology, 2017, 38, 844-857.	6.8	86
10	Next-Generation Surrogate Wnts Support Organoid Growth and Deconvolute Frizzled Pleiotropy InÂVivo. Cell Stem Cell, 2020, 27, 840-851.e6.	11.1	84
11	Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1. ELife, 2013, 2, e00813.	6.0	78
12	Cellular architecture of human brain metastases. Cell, 2022, 185, 729-745.e20.	28.9	69
13	Origin of the sharp boundary that discriminates positive and negative selection of thymocytes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 528-533.	7.1	59
14	Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers in T Cells. Frontiers in Immunology, 2013, 4, 239.	4.8	58
15	RasGRP1 opposes proliferative EGFR–SOS1–Ras signals and restricts intestinal epithelial cell growth. Nature Cell Biology, 2015, 17, 804-815.	10.3	54
16	mTOR and other effector kinase signals that impact T cell function and activity. Immunological Reviews, 2019, 291, 134-153.	6.0	53
17	RasGRP Ras guanine nucleotide exchange factors in cancer. Frontiers in Biology, 2013, 8, 508-532.	0.7	49
18	One-way membrane trafficking of SOS in receptor-triggered Ras activation. Nature Structural and Molecular Biology, 2016, 23, 838-846.	8.2	49

Jeroen P Roose

#	Article	IF	CITATIONS
19	Dysregulated RasGRP1 Responds to Cytokine Receptor Input in T Cell Leukemogenesis. Science Signaling, 2013, 6, ra21.	3.6	45
20	Rasgrp1 mutation increases naÃ ⁻ ve T-cell CD44 expression and drives mTOR-dependent accumulation of Helios+ T cells and autoantibodies. ELife, 2013, 2, e01020.	6.0	45
21	Tonic LAT-HDAC7 Signals Sustain Nur77 and Irf4 Expression to Tune Naive CD4ÂT Cells. Cell Reports, 2017, 19, 1558-1571.	6.4	34
22	A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1. ELife, 2017, 6, .	6.0	32
23	Active Tonic mTORC1 Signals Shape Baseline Translation in Naive T Cells. Cell Reports, 2019, 27, 1858-1874.e6.	6.4	28
24	Basal LAT-diacylglycerol-RasGRP1 Signals in T Cells Maintain TCRα Gene Expression. PLoS ONE, 2011, 6, e25540.	2.5	24
25	Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS. Molecular and Cellular Biology, 2013, 33, 2470-2484.	2.3	19
26	RasGRP1 is a potential biomarker for stratifying anti-EGFR therapy response in colorectal cancer. JCI Insight, 2019, 4, .	5.0	17
27	Comprehensive analysis of T cell leukemia signals reveals heterogeneity in the PI3 kinase-Akt pathway and limitations of PI3 kinase inhibitors as monotherapy. PLoS ONE, 2018, 13, e0193849.	2.5	14
28	PLC-Î ³ and PI3K Link Cytokines to ERK Activation in Hematopoietic Cells with Normal and Oncogenic <i>Kras</i> . Science Signaling, 2013, 6, ra105.	3.6	12
29	Alternative ZAP70-p38 signals prime a classical p38 pathway through LAT and SOS to support regulatory T cell differentiation. Science Signaling, 2019, 12, .	3.6	11
30	Distinct oncogenic Ras signals characterized by profound differences in flux through the RasGDP/RasGTP cycle. Small GTPases, 2017, 8, 20-25.	1.6	10
31	High-Complexity shRNA Libraries and PI3 Kinase Inhibition in Cancer: High-Fidelity Synthetic Lethality Predictions. Cell Reports, 2019, 27, 631-647.e5.	6.4	9
32	Dysregulated RASGRP1 expression through RUNX1 mediated transcription promotes autoimmunity. European Journal of Immunology, 2021, 51, 471-482.	2.9	9
33	Increased baseline RASGRP1 signals enhance stem cell fitness during native hematopoiesis. Oncogene, 2020, 39, 6920-6934.	5.9	6
34	Unraveling Heterogeneity in Epithelial Cell Fates of the Mammary Gland and Breast Cancer. Cancers, 2019, 11, 1423.	3.7	5
35	<i>Nras Q61R/+</i> and <i>Kras â^'/â^'</i> cooperate to downregulate Rasgrp1 and promote lympho-myeloid leukemia in early T-cell precursors. Blood, 2021, 137, 3259-3271.	1.4	5
36	Biochemical heterogeneity and developmental varieties in T-cell leukemia. Cell Cycle, 2013, 12, 1480-1481.	2.6	4

Jeroen P Roose

#	Article	IF	CITATIONS
37	Regulation of the Small GTPase Ras and Its Relevance to Human Disease. Methods in Molecular Biology, 2021, 2262, 19-43.	0.9	4
38	Protocol for Barcoding T Cells Combined with Timed Stimulations. STAR Protocols, 2020, 1, 100067.	1.2	3
39	Bioinformatic Approaches to Validation and Functional Analysis of 3D Lung Cancer Models. Cancers, 2021, 13, 701.	3.7	3
40	Flavors of EGFR-Ras signals impacting intestinal homeostasis. Cell Cycle, 2015, 14, 3205-3206.	2.6	2
41	Lost GRP on cytotoxicity?. Nature Immunology, 2016, 17, 1339-1340.	14.5	2
42	Kinase and Phosphatase Effector Pathways in T Cells. , 2016, , 25-37.		2
43	Unexpected insights for anti-EGFR cancer therapy. Oncotarget, 2015, 6, 18746-18747.	1.8	1
44	Protocol for Comprehensive Synthetic Lethality Screens. STAR Protocols, 2020, 1, 100016.	1.2	0
45	Cellular Architecture of Human Brain Metastases. SSRN Electronic Journal, 0, , .	0.4	0
46	Investigating increased hematopoietic stem cell fitness in a novel mouse model. Small GTPases, 2021, , 1-7.	1.6	0
47	T cells: a dedicated effector kinase pathways for every trait?. Biochemical Journal, 2021, 478, 1303-1307.	3.7	0
48	Tcof1 haploinsufficiency promotes early T cell precursor-like leukemia in NrasQ61R/+ mice. Leukemia, 2022, , .	7.2	0