Yu Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9453456/publications.pdf

Version: 2024-02-01

	186209	233338
2,283	28	45
citations	h-index	g-index
		4-0-
56	56	4131
docs citations	times ranked	citing authors
	citations 56	2,283 28 citations h-index 56 56

#	Article	IF	CITATIONS
1	Cigarette smoking is a secondary cause of folliculin loss. Thorax, 2023, 78, 402-408.	2.7	3
2	Targeting mTOR Signaling in Type 2 Diabetes Mellitus and Diabetes Complications. Current Drug Targets, 2022, 23, 692-710.	1.0	7
3	Ciliary localization of folliculin mediated via a kinesinâ€2â€binding motif is required for its functions in mTOR regulation and tumor suppression. FEBS Letters, 2021, 595, 123-132.	1.3	4
4	Abnormal expression of Rab27B in prostatic epithelial cells of benign prostatic hyperplasia alters intercellular communication. International Journal of Biochemistry and Cell Biology, 2021, 131, 105898.	1.2	1
5	A Fbxo48 inhibitor prevents pAMPKα degradation and ameliorates insulin resistance. Nature Chemical Biology, 2021, 17, 298-306.	3.9	16
6	Metformin: A Potential Candidate for Targeting Aging Mechanisms. , 2021, 12, 480.		30
7	Advances in Biological Function and Clinical Application of Small Extracellular Vesicle Membrane Proteins. Frontiers in Oncology, 2021, 11, 675940.	1.3	19
8	Vangl2 limits chaperone-mediated autophagy to balance osteogenic differentiation in mesenchymal stem cells. Developmental Cell, 2021, 56, 2103-2120.e9.	3.1	20
9	Tsc1 regulates tight junction independent of mTORC1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
10	Analysis of the mTOR Interactome using SILAC technology revealed NICE-4 as a novel regulator of mTORC1 activity. Life Sciences, 2021, 281, 119745.	2.0	1
11	Comparison of the Variability of Small Extracellular Vesicles Derived from Human Liver Cancer Tissues and Cultured from the Tissue Explants Based on a Simple Enrichment Method. Stem Cell Reviews and Reports, 2021, , 1.	1.7	4
12	Ginsenoside Rg3 Promotes Cell Growth Through Activation of mTORC1. Frontiers in Cell and Developmental Biology, 2021, 9, 730309.	1.8	6
13	Exosomes as potential sources of biomarkers in colorectal cancer. Cancer Letters, 2020, 476, 13-22.	3.2	124
14	Reciprocal Regulation between Primary Cilia and mTORC1. Genes, 2020, 11, 711.	1.0	17
15	Production of bioethanol and xylitol from non-detoxified corn cob via a two-stage fermentation strategy. Bioresource Technology, 2020, 310, 123427.	4.8	51
16	Chemical inhibition of FBXO7 reduces inflammation and confers neuroprotection by stabilizing the mitochondrial kinase PINK1. JCI Insight, 2020, 5, .	2.3	40
17	The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345. Applied Microbiology and Biotechnology, 2019, 103, 2845-2855.	1.7	31
18	Rheb1 loss leads to increased hematopoietic stem cell proliferation and myeloid-biased differentiation <i>in vivo</i> . Haematologica, 2019, 104, 245-255.	1.7	15

#	Article	IF	CITATIONS
19	TSC1 regulates osteoclast podosome organization and bone resorption through mTORC1 and Rac1/Cdc42. Cell Death and Differentiation, 2018, 25, 1549-1566.	5.0	24
20	Positive-Feedback Regulation of Subchondral H-Type Vessel Formation by Chondrocyte Promotes Osteoarthritis Development in Mice. Journal of Bone and Mineral Research, 2018, 33, 909-920.	3.1	60
21	Tyrosine kinase Fyn promotes osteoarthritis by activating the \hat{I}^2 -catenin pathway. Annals of the Rheumatic Diseases, 2018, 77, annrheumdis-2017-212658.	0.5	48
22	Interaction of TBC1D9B with Mammalian ATG8 Homologues Regulates Autophagic Flux. Scientific Reports, 2018, 8, 13496.	1.6	14
23	ATF4 Regulates CD4+ T Cell Immune Responses through Metabolic Reprogramming. Cell Reports, 2018, 23, 1754-1766.	2.9	69
24	Colonic epithelial mTORC1 promotes ulcerative colitis through COX-2-mediated Th17 responses. Mucosal Immunology, 2018, 11, 1663-1673.	2.7	38
25	Inactivation of mTORC1 Signaling in Osterix-Expressing Cells Impairs B-cell Differentiation. Journal of Bone and Mineral Research, 2018, 33, 732-742.	3.1	13
26	General Control Nonderepressible 2 (GCN2) Kinase Inhibits Target of Rapamycin Complex 1 in Response to Amino Acid Starvation in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2017, 292, 2660-2669.	1.6	42
27	Nek7 Protects Telomeres from Oxidative DNA Damage by Phosphorylation and Stabilization of TRF1. Molecular Cell, 2017, 65, 818-831.e5.	4.5	44
28	Intra-articular Delivery of Antago-miR-483-5p Inhibits Osteoarthritis by Modulating Matrilin 3 and Tissue Inhibitor of Metalloproteinase 2. Molecular Therapy, 2017, 25, 715-727.	3.7	70
29	Osteoblasts support megakaryopoiesis through production of interleukin-9. Blood, 2017, 129, 3196-3209.	0.6	31
30	Neuronal mTORC1 Is Required for Maintaining the Nonreactive State of Astrocytes. Journal of Biological Chemistry, 2017, 292, 100-111.	1.6	20
31	Target of rapamycin complex 1 and Tap42â \in associated phosphatases are required for sensing changes in nitrogen conditions in the yeast <i>Saccharomyces cerevisiae</i> . Molecular Microbiology, 2017, 106, 938-948.	1.2	8
32	Proximal tubule apical endocytosis is modulated by fluid shear stress via an mTOR-dependent pathway. Molecular Biology of the Cell, 2017, 28, 2508-2517.	0.9	50
33	Synergistic effect of thioredoxin and its reductase from Kluyveromyces marxianus on enhanced tolerance to multiple lignocellulose-derived inhibitors. Microbial Cell Factories, 2017, 16, 181.	1.9	13
34	Sec24 phosphorylation regulates autophagosome abundance during nutrient deprivation. ELife, 2016, 5, .	2.8	73
35	Ubiquitin regulates TORC1 in yeast <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> Microbiology, 2016, 100, 303-314.	1.2	9
36	Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone. Nature Communications, 2016, 7, 13885.	5.8	103

#	Article	IF	Citations
37	Regulation of TORC1 by ubiquitin through non-covalent binding. Current Genetics, 2016, 62, 553-555.	0.8	9
38	Tumor Suppressor Folliculin Regulates mTORC1 through Primary Cilia. Journal of Biological Chemistry, 2016, 291, 11689-11697.	1.6	33
39	nm23 regulates decidualization through the PI3K-Akt-mTOR signaling pathways in mice and humans. Human Reproduction, 2016, 31, 2339-2351.	0.4	30
40	mTORC1 promotes aging-related venous thrombosis in mice via elevation of platelet volume and activation. Blood, 2016, 128, 615-624.	0.6	61
41	mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nature Communications, 2016, 7, 11151.	5.8	92
42	Activation of mTORC1 in B Lymphocytes Promotes Osteoclast Formation via Regulation of \hat{l}^2 -Catenin and RANKL/OPG. Journal of Bone and Mineral Research, 2016, 31, 1320-1333.	3.1	36
43	Retrograde trafficking of VMAT2 and its role in protein stabilityin non-neuronal cells. Journal of Biomedical Research, 2016, 30, 502-509.	0.7	11
44	FK506-Binding Proteins and Their Diverse Functions. Current Molecular Pharmacology, 2015, 9, 48-65.	0.7	73
45	Ypt1/Rab1 regulates Hrr25/CK1δ kinase activity in ER–Golgi traffic and macroautophagy. Journal of Cell Biology, 2015, 210, 273-285.	2.3	63
46	mTORC2 promotes cell survival through c-Myc–dependent up-regulation of E2F1. Journal of Cell Biology, 2015, 211, 105-122.	2.3	33
47	mTOR Inhibitors at a Glance. Molecular and Cellular Pharmacology, 2015, 7, 15-20.	1.7	73
48	TBC1D9B functions as a GTPase-activating protein for Rab11a in polarized MDCK cells. Molecular Biology of the Cell, 2014, 25, 3779-3797.	0.9	33
49	TOR under stress: Targeting TORC1 by Rho1 GTPase. Cell Cycle, 2012, 11, 3384-3388.	1.3	13
50	The TOR Complex 1 Is a Direct Target of Rho1 GTPase. Molecular Cell, 2012, 45, 743-753.	4.5	70
51	Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. EMBO Journal, 2006, 25, 3546-3555.	3.5	101
52	Regulation of the Cell Cycle by Protein Phosphatase 2A in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 2006, 70, 440-449.	2.9	75
53	The Yeast Phosphotyrosyl Phosphatase Activator Is Part of the Tap42–Phosphatase Complexes. Molecular Biology of the Cell, 2005, 16, 2119-2127.	0.9	38
54	Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO Journal, 1999, 18, 2782-2792.	3.5	315