Junxin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9453301/publications.pdf Version: 2024-02-01

LUNYIN CHEN

#	Article	IF	CITATIONS
1	Dual-Channel Neural Network for Atrial Fibrillation Detection From a Single Lead ECG Wave. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 2296-2305.	3.9	13
2	Cardiac LGE MRI Segmentation With Cross-Modality Image Augmentation and Improved U-Net. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 588-597.	3.9	2
3	Cross-Modality LGE-CMR Segmentation Using Image-to-Image Translation Based Data Augmentation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 2367-2375.	1.9	28
4	Ensemble Learning-Based Atrial Fibrillation Detection From Single Lead ECG Wave for Wireless Body Sensor Network. IEEE Transactions on Network Science and Engineering, 2023, 10, 2627-2636.	4.1	3
5	Wi-Breath: A WiFi-Based Contactless and Real-Time Respiration Monitoring Scheme for Remote Healthcare. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 2276-2285.	3.9	5
6	Compressed Sensing Framework for Heart Sound Acquisition in Internet of Medical Things. IEEE Transactions on Industrial Informatics, 2022, 18, 2000-2009.	7.2	49
7	Propylene and butylene glycol: new alternatives to ethylene glycol in conjugated polymers for bioelectronic applications. Materials Horizons, 2022, 9, 973-980.	6.4	23
8	Facilely Accessible Porous Conjugated Polymers toward High-Performance and Flexible Organic Electrochemical Transistors. Chemistry of Materials, 2022, 34, 1666-1676.	3.2	30
9	Efficient n-Type Small-Molecule Mixed Ion-Electron Conductors and Application in Hydrogen Peroxide Sensors. ACS Applied Materials & Interfaces, 2022, 14, 16477-16486.	4.0	22
10	Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation. , 2022, , .		2
11	DDCNN: A Deep Learning Model for AF Detection From a Single-Lead Short ECG Signal. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4987-4995.	3.9	12
12	Universal Chosen-Ciphertext Attack for a Family of Image Encryption Schemes. IEEE Transactions on Multimedia, 2021, 23, 2372-2385.	5.2	20
13	Cryptanalysis of Image Ciphers With Permutation-Substitution Network and Chaos. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 2494-2508.	5.6	30
14	Exploiting 5G and Blockchain for Medical Applications of Drones. IEEE Network, 2021, 35, 30-36.	4.9	26
15	Re-Evaluation of the Security of a Family of Image Diffusion Mechanisms. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 4747-4758.	5.6	6
16	Improved Reconstruction for CS-Based ECG Acquisition in Internet of Medical Things. IEEE Sensors Journal, 2021, 21, 25222-25233.	2.4	30
17	Global context aware RCNN for object detection. Neural Computing and Applications, 2021, 33, 11627-11639.	3.2	15
18	Design of a Multilayer Dual-Band Balanced Bandpass Filter on a Circular Patch Resonator. Frontiers in Physics, 2021, 9, .	1.0	0

JUNXIN CHEN

#	Article	IF	CITATIONS
19	Survey on atrial fibrillation detection from a single-lead ECG wave for Internet of Medical Things. Computer Communications, 2021, 178, 245-258.	3.1	21
20	The effect of the donor moiety of DPP based polymers on the performance of organic electrochemical transistors. Journal of Materials Chemistry C, 2021, 9, 13338-13346.	2.7	28
21	Ensemble Learning for Atrial Fibrillation Screening from a Single Lead ECG Wave of Wearable Devices. , 2021, , .		2
22	Geography-Aware Inductive Matrix Completion for Personalized Point-of-Interest Recommendation in Smart Cities. IEEE Internet of Things Journal, 2020, 7, 4361-4370.	5.5	51
23	Automatic skin lesion segmentation based on FC-DPN. Computers in Biology and Medicine, 2020, 123, 103762.	3.9	54
24	Realizing the Potential of the Internet of Things for Smart Tourism with 5G and Al. IEEE Network, 2020, 34, 295-301.	4.9	158
25	Cryptanalysis of a chaotic image cipher based on plaintext-related permutation and lookup table. Nonlinear Dynamics, 2020, 100, 3959-3978.	2.7	10
26	Predicting Unnecessary Nodule Biopsies from a Small, Unbalanced, and Pathologically Proven Dataset by Transfer Learning. Journal of Digital Imaging, 2020, 33, 685-696.	1.6	5
27	Trust-Enhanced Collaborative Filtering for Personalized Point of Interests Recommendation. IEEE Transactions on Industrial Informatics, 2020, 16, 6124-6132.	7.2	88
28	Cryptanalysis of a DNA-based image encryption scheme. Information Sciences, 2020, 520, 130-141.	4.0	112
29	Comparative Study of Compressed Sensing for Heart Sound Acquisition in Wireless Body Sensor Networks. IEEE Access, 2020, 8, 22483-22492.	2.6	10
30	Compressed Sensing Based Selective Encryption With Data Hiding Capability. IEEE Transactions on Industrial Informatics, 2019, 15, 6560-6571.	7.2	33
31	Cryptanalysis and Improvement of a Chaos-Based Watermarking Scheme. IEEE Access, 2019, 7, 97549-97565.	2.6	12
32	Compressed sensing for electrocardiogram acquisition in wireless body sensor network: A comparative analysis. International Journal of Distributed Sensor Networks, 2019, 15, 155014771986488.	1.3	7
33	Graphene-Enhanced Surface Plasmon Resonance Liquid Refractive Index Sensor Based on Photonic Crystal Fiber. Sensors, 2019, 19, 3666.	2.1	30
34	Medical image cipher using hierarchical diffusion and non-sequential encryption. Nonlinear Dynamics, 2019, 96, 301-322.	2.7	50
35	Optical information authentication using optical encryption and sparsity constraint. Optics and Lasers in Engineering, 2018, 107, 352-363.	2.0	13
36	Low-Cost and Confidentiality-Preserving Data Acquisition for Internet of Multimedia Things. IEEE Internet of Things Journal, 2018, 5, 3442-3451.	5.5	88

JUNXIN CHEN

#	Article	IF	CITATIONS
37	Exploiting chaos-based compressed sensing and cryptographic algorithm for image encryption and compression. Optics and Laser Technology, 2018, 99, 238-248.	2.2	132
38	Security enhancement of double random phase encoding using rear-mounted phase masking. Optics and Lasers in Engineering, 2018, 101, 51-59.	2.0	26
39	Exploiting self-adaptive permutation–diffusion and DNA random encoding for secure and efficient image encryption. Signal Processing, 2018, 142, 340-353.	2.1	263
40	Image Encryption Based on Fully Phase Encoding and Pixel Scrambling in Gyrator Transform Domain. , 2018, , .		0
41	Cryptanalysis and improvement in an image encryption scheme using combination of the 1D chaotic map. Nonlinear Dynamics, 2018, 93, 2399-2413.	2.7	51
42	Exploiting the Security Aspects of Compressive Sampling. Security and Communication Networks, 2018, 2018, 1-1.	1.0	0
43	A Fast Chaos-Based Colour Image Encryption Algorithm Using a Hash Function. Informatica, 2018, 29, 651-673.	1.5	7
44	Deciphering an RGB color image cryptosystem based on Choquet fuzzy integral. Neural Computing and Applications, 2017, 28, 165-169.	3.2	5
45	Information authentication using sparse representation of double random phase encoding in fractional Fourier transform domain. Optik, 2017, 136, 1-7.	1.4	14
46	An approach for physical layer security enhancement and PAPR reduction in OFDM-PON. Optical Fiber Technology, 2017, 36, 370-373.	1.4	2
47	Optical information authentication via compressed sensing and double random phase encoding. Journal of Optics (United Kingdom), 2017, 19, 105702.	1.0	7
48	Cryptanalysis of Optical Ciphers Integrating Double Random Phase Encoding With Permutation. IEEE Access, 2017, 5, 16124-16129.	2.6	4
49	On the Security of Optical Ciphers Under the Architecture of Compressed Sensing Combining With Double Random Phase Encoding. IEEE Photonics Journal, 2017, 9, 1-11.	1.0	5
50	Differential attack on a hyper-chaos-based image cryptosystem with a classic bi-modular architecture. Nonlinear Dynamics, 2017, 87, 383-390.	2.7	39
51	Gyrator transform based double random phase encoding with sparse representation for information authentication. Optics and Laser Technology, 2015, 70, 50-58.	2.2	37
52	An image encryption scheme using nonlinear inter-pixel computing and swapping based permutation approach. Communications in Nonlinear Science and Numerical Simulation, 2015, 23, 294-310.	1.7	73
53	Reusing the permutation matrix dynamically for efficient image cryptographic algorithm. Signal Processing, 2015, 111, 294-307.	2.1	50
54	An efficient image encryption scheme using lookup table-based confusion and diffusion. Nonlinear Dynamics, 2015, 81, 1151-1166.	2.7	101

JUNXIN CHEN

#	Article	IF	CITATIONS
55	Deciphering an image cipher based on 3-cell chaotic map and biological operations. Nonlinear Dynamics, 2015, 82, 1831-1837.	2.7	31
56	Optical image encryption scheme using 3-D chaotic map based joint image scrambling and random encoding in gyrator domains. Optics Communications, 2015, 341, 263-270.	1.0	39
57	Infrared target-based selective encryption by chaotic maps. Optics Communications, 2015, 341, 131-139.	1.0	37
58	An efficient image encryption scheme using gray code based permutation approach. Optics and Lasers in Engineering, 2015, 67, 191-204.	2.0	71
59	Analysis and improvement of a double-image encryption scheme using pixel scrambling technique in gyrator domains. Optics and Lasers in Engineering, 2015, 66, 1-9.	2.0	65
60	A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism. Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 846-860.	1.7	131
61	An Efficient Diffusion Scheme for Chaos-Based Digital Image Encryption. Mathematical Problems in Engineering, 2014, 2014, 1-13.	0.6	9
62	A novel double-image encryption scheme based on cross-image pixel scrambling in gyrator domains. Optics Express, 2014, 22, 7349.	1.7	67
63	Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding. Journal of Optics (United Kingdom), 2014, 16, 125403.	1.0	27
64	A fast image encryption scheme with a novel pixel swapping-based confusion approach. Nonlinear Dynamics, 2014, 77, 1191-1207.	2.7	67
65	A fast chaos-based symmetric image cryptosystem with an improved diffusion scheme. Optik, 2014, 125, 2472-2478.	1.4	31
66	An improved permutation-diffusion type image cipher with a chaotic orbit perturbing mechanism. Optics Express, 2013, 21, 27873.	1.7	49