
Malek Taher Maghsoodlou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/945323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Efficient Synthesis of Stable Phosphorus Ylides Derived from Triphenylphosphine, Dialkyl Acetylenedicarboxylates, and an NH-Acid. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 865-877.	1.6	69
2	Catalytic systems containing p-toluenesulfonic acid monohydrate catalyzed the synthesis of triazoloquinazolinone and benzimidazoquinazolinone derivatives. Monatshefte FA¼r Chemie, 2014, 145, 1967-1973.	1.8	58
3	Copper(II) acetate monohydrate: an efficient and eco-friendly catalyst for the one-pot multi-component synthesis of biologically active spiropyrans and 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives under solvent-free conditions. Research on Chemical Intermediates, 2016, 42, 7841-7853.	2.7	52
4	One-pot five-component synthesis of highly functionalized piperidines using oxalic acid dihydrate as a homogenous catalyst. Chinese Chemical Letters, 2012, 23, 569-572.	9.0	50
5	A Simple Synthesis of Stable Phosphoranes Derived from Imidazole Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 553-560.	1.6	49
6	One-pot multicomponent synthesis of highly substituted piperidines using p-toluenesulfonic acid monohydrate as catalyst. Monatshefte FA¼r Chemie, 2012, 143, 939-945.	1.8	48
7	Nano-SiO2: a green, efficient, and reusable heterogeneous catalyst for the synthesis of quinazolinone derivatives. Journal of the Iranian Chemical Society, 2015, 12, 743-749.	2.2	48
8	Al(H2PO4)3 as an efficient and reusable catalyst for the multi-component synthesis of highly functionalized piperidines and dihydro-2-oxypyrroles. Journal of the Iranian Chemical Society, 2013, 10, 863-871.	2.2	44
9	Saccharin: a green, economical and efficient catalyst for the one-pot, multi-component synthesis of 3,4-dihydropyrimidin-2-(1H)-one derivatives and 1H-pyrazolo [1,2-b] phthalazine-5,10-dione derivatives and substituted dihydro-2-oxypyrrole. Journal of the Iranian Chemical Society, 2016, 13, 1549-1560.	2.2	43
10	A simple, economical, and environmentally benign protocol for the synthesis of [1,2,4]triazolo[5,1-b]quinazolin-8(4H)-one and hexahydro[4,5]benzimidazolo[2,1-b]quinazolinone derivatives. Journal of the Iranian Chemical Society, 2015, 12, 1419-1424.	2.2	41
11	Tartaric acid: a natural, green and highly efficient catalyst for the one-pot synthesis of functionalized piperidines. Research on Chemical Intermediates, 2015, 41, 8057-8065.	2.7	40
12	Synthesis and characterization of Fe ₃ O ₄ @THAMâ€SO ₃ H as a highly reusable nanocatalyst and its application for the synthesis of dihydropyrano[2,3â€ <i>c</i>]pyrazole derivatives. Applied Organometallic Chemistry, 2020, 34, e5472.	3.5	38
13	An efficient synthesis of αâ€Amino phosphonates using silica sulfuric acid as a heterogeneous catalyst. Heteroatom Chemistry, 2009, 20, 316-318.	0.7	37
14	Synthesis of Highly Functionalized Piperidines via One-Pot, Five-Component Reactions in the Presence of Acetic Acid Solvent. Synthetic Communications, 2013, 43, 635-644.	2.1	37
15	An Efficient Synthesis of Stable Phosphorus Ylides Derived from Pyrazole and Indazole. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 25-30.	1.6	36
16	Saccharose as a new, natural, and highly efficient catalyst for the one-pot synthesis of 4,5-dihydropyrano[3,2-c]chromenes, 2-amino-3-cyano-4H-chromenes,A1,8-dioxodecahydroacridine, and 2-substituted benzimidazole derivatives. Research on Chemical Intermediates, 2015, 41, 6985-6997.	2.7	35
17	A facile synthesis of stable phosphorus ylides derived from 3,6â€dibromocarbazole and kinetic investigation of the reactions by UV spectrophotometry technique. Heteroatom Chemistry, 2008, 19, 723-732.	0.7	32
18	Green protocol for synthesis of 2,3-dihydroquinazolin-4(1H)-ones: lactic acid as catalyst under solvent-free condition. Research on Chemical Intermediates, 2016, 42, 6381-6390.	2.7	32

#	Article	IF	CITATIONS
19	An efficient one-pot multi-component synthesis of 3,4,5-substituted furan-2(5H)-ones catalyzed by tetra-n-butylammonium bisulfate. Chinese Chemical Letters, 2013, 24, 901-903.	9.0	31
20	Trityl chloride as an efficient organic catalyst for one-pot, five-component and diastereoselective synthesis of highly substituted piperidines. Research on Chemical Intermediates, 2014, 40, 723-736.	2.7	31
21	Chitosan: a sustainable, reusable and biodegradable organocatalyst for green synthesis of 1,4-dihydropyridine derivatives under solvent-free condition. Research on Chemical Intermediates, 2016, 42, 8069-8081.	2.7	29
22	ZrCl4 as an efficient catalyst for one-pot synthesis of highly functionalized piperidines via multi-component organic reactions. Research on Chemical Intermediates, 2015, 41, 1925-1934.	2.7	28
23	An Efficient Synthesis of Stable Phosphorus Ylides Derived from Hydantoin and 5,5-dialkylhydantoins. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 759-769.	1.6	27
24	A Facile Synthesis of Stable Phosphorus Ylides Containing Chlorine and Sulfur Derived from 6-Chloro-2-benzoxazolethiol and 2-Chloro-phenothiazine. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 1713-1721.	1.6	27
25	Preparation and characterization of MNPs–PhSO3H as a heterogeneous catalyst for the synthesis of benzo[b]pyran and pyrano[3,2-c]chromenes. Research on Chemical Intermediates, 2020, 46, 1685-1704.	2.7	27
26	A facile and efficient synthesis of tetrahydrobenzo[b]pyrans using lactose as a green catalyst. Research on Chemical Intermediates, 2015, 41, 5907-5914.	2.7	26
27	Aspirin: an efficient catalyst for synthesis of bis (pyrazol-5-ols), dihydropyrano[2,3-c]pyrazoles and spiropyranopyrazoles in an environmentally benign manner. Journal of the Iranian Chemical Society, 2017, 14, 1945-1956.	2.2	26
28	Fe3O4@THAM-piperazine: a novel and highly reusable nanocatalyst for one-pot synthesis of 1,8-dioxo-octahydro-xanthenes and benzopyrans. Research on Chemical Intermediates, 2020, 46, 3651-3666.	2.7	26
29	One-Pot Synthesis of Stable Phosphorus Ylides Using CH-Acid Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 1363-1369.	1.6	24
30	Chemoselective Synthesis of Stable Phosphorus Ylides from 6-Azauracil and Mechanistic Investigation of the Reaction by UV Spectrophotometry. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 2959-2979.	1.6	24
31	Potassium sodium tartrate as a versatile and efficient catalyst for the one-pot synthesis of pyran annulated heterocyclic compounds in aqueous media. Research on Chemical Intermediates, 2015, 41, 169-174.	2.7	24
32	ZrCl4 as an efficient catalyst for one-pot four-component synthesis of polysubstituted dihydropyrrol-2-ones. Research on Chemical Intermediates, 2016, 42, 2805-2814.	2.7	24
33	A green protocol for one-pot three-component synthesis of 1-(benzothiazolylamino) methyl-2-naphthol catalyzed by oxalic acid. Journal of the Iranian Chemical Society, 2017, 14, 329-335.	2.2	24
34	One-Pot Three-Component Synthesis of Highly Substituted Piperidines Using 1-Methyl-2-Oxopyrrolidinium Hydrogen Sulfate. Journal of Chemical Research, 2012, 36, 463-467.	1.3	23
35	A Facile Synthesis of Stable Phosphorus Ylides Derived from Harmin, Harman, and Carbazole. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 567-572.	1.6	22
36	Synthesis of aromatic amine phosphonato ester derivatives from the stereoselective reaction between triphenyl phosphite and dimethyl acetylenedicarboxylate in the presence of derivatives of aromatic amines. Heteroatom Chemistry, 2009, 20, 240-245.	0.7	22

#	Article	IF	CITATIONS
37	A One-pot Multi-component Synthesis of N-aryl-3-aminodihydropyrrol-2-one-4-carboxylates Catalysed by Oxalic Acid Dihydrate. Journal of Chemical Research, 2013, 37, 40-42.	1.3	22
38	Fe(NO ₃) ₃ ·9H ₂ O as Efficient Catalyst for Oneâ€pot Synthesis of Highly Functionalized Piperidines. Journal of the Chinese Chemical Society, 2013, 60, 355-358.	1.4	21
39	A Mild and Environmentally Benign Synthesis of Tetrahydrobenzo[<i>b</i>]pyrans and Pyrano[<i>c</i>]chromenes Using Pectin as a Green and Biodegradable Catalyst. Journal of the Chinese Chemical Society, 2016, 63, 896-901.	1.4	21
40	One-Pot, Three-Component Synthesis of α-Amino Phosphonates Using NaHSO4-SiO2 as an Efficient and Reusable Catalyst. Synthetic Communications, 2012, 42, 136-143.	2.1	20
41	Green procedure for the synthesis of 1,4-dihydropyrano[2,3-c]pyrazoles using saccharose. Journal of the Iranian Chemical Society, 2015, 12, 47-50.	2.2	20
42	Na2EDTA: an efficient, green and reusable catalyst for the synthesis of biologically important spirooxindoles, spiroacenaphthylenes and spiro-2-amino-4H-pyrans under solvent-free conditions. Journal of the Iranian Chemical Society, 2017, 14, 2117-2125.	2.2	20
43	A simple and green approach for the synthesis of polyfunctionalized mono- and bis-dihydro-2-oxopyrroles catalyzed by trityl chloride. RSC Advances, 2014, 4, 43454-43459.	3.6	19
44	Synthesis and evaluation of biological activity of novel chromeno[4,3-b]quinolin-6-one derivatives by SO3H-tryptamine supported on Fe3O4@SiO2@CPS as recyclable and bioactive magnetic nanocatalyst. Journal of the Iranian Chemical Society, 2020, 17, 3271-3284.	2.2	19
45	A Simple Synthesis of Stable Phosphorus Ylides from Indole and Some of Its Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 913-919.	1.6	18
46	Synthesis of Hydroxybenzaldehyde Stable Phosphorus Ylides from the Reaction Between Acetylenic Esters with Triphenylphosphine in the Presence of 2,3-Dihydroxybenzaldehyde and 2-Hydroxy-4-methoxybenzaldehyde. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 1117-1122.	1.6	18
47	Acetic acid as an efficient catalyst for the one-pot preparation of 3,4,5-substituted furan-2(5H)-ones. Research on Chemical Intermediates, 2013, 39, 4061-4066.	2.7	18
48	Tartaric Acid: A Naturally Green and Efficient Di-Functional BrÃ,nsted Acid Catalyst for the One-Pot Four-Component Synthesis of Polysubstituted Dihydropyrrol-2-Ones at Ambient Temperature. Iranian Journal of Science and Technology, Transaction A: Science, 2017, 41, 843-849.	1.5	18
49	Synthesis of maleate derivatives in isocyanide-base MCRs: reaction of 2-mercaptobenzoxazole with alkyl isocyanides and dialkyl acetylenedicarboxylates. Research on Chemical Intermediates, 2015, 41, 3011-3016.	2.7	17
50	A Facile, One-Pot Synthesis of Azoic Compounds and Anthraquinone Derivatives Containing Dialkyl Phosphoryl Moieties in Multicomponent Reactions. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1395-1403.	1.6	16
51	An efficient and simple synthesis of α-amino phosphonates as â€ [~] drug like' molecules catalyzed by silica-supported perchloric acid (HClO4–SiO2). Arabian Journal of Chemistry, 2011, 4, 481-485.	4.9	16
52	A Novel and Efficient Synthesis of α-Aminophosphonates by Use of Triphenyl Phosphite in Acetic Acid Media. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 334-337.	1.6	16
53	Solvent-free synthesis of 1-(benzothiazolylamino)methyl-2-naphthols with maltose as green catalyst. Research on Chemical Intermediates, 2015, 41, 7553-7560.	2.7	16
54	Starch solution as an efficient and environment-friendly catalyst for one-pot synthesis of β-aminoketones and 2,3-dihydroquinazolin-4(1H)-ones in EtOH. Research on Chemical Intermediates, 2015, 41, 7497-7508.	2.7	15

#	Article	IF	CITATIONS
55	Efficient Lactic Acid-catalyzed Route to Naphthopyranopyrimidines under Solvent-free Conditions. Organic Preparations and Procedures International, 2017, 49, 35-44.	1.3	15
56	Kinetic Investigation of the Reaction between Triphenylphosphine, Dialkyl Acetylenedicarboxylate, and Carbazole by the UV Spectrophotometry Technique. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 1103-1115.	1.6	14
57	Chemoselective Synthesis of New Stable Phosphorus Ylides from the Reaction Between Triphenylphosphine and Activated Acetylenic Esters in the Presence of Heterocyclic Biological Bases. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 186, 21-30.	1.6	14
58	A green and efficient one-pot three-component synthesis of dihydropyrano[3,2-c]chromenes using NaCl in hydroalcoholic media. Research on Chemical Intermediates, 2015, 41, 8665-8672.	2.7	14
59	Agar: a novel, efficient, and biodegradable catalyst for the one-pot three-component and green synthesis of 2,3-dihydroquinazolin-4(1H)-one, 4H-pyrimidobenzothiazole and 2-aminobenzothiazolomethylnaphthol derivatives. Research on Chemical Intermediates, 2015, 41, 7377-7391.	2.7	14
60	Synthesis of Quinolines, Spiro[4 <i>H</i> -pyran-oxindoles] and Xanthenes Under Solvent-Free Conditions. Organic Preparations and Procedures International, 2019, 51, 456-476.	1.3	14
61	Acidic ionic liquid N-methyl 2-pyrrolidonium hydrogen sulfate as an efficient catalyst for the one-pot multicomponent preparation of 3,4,5-substituted furan-2(5H)-ones. Research on Chemical Intermediates, 2015, 41, 6477-6483.	2.7	13
62	Acetic acid-promoted eco-friendly one-pot pseudo six-component synthesis of bis-spiro-substituted piperidines. Research on Chemical Intermediates, 2016, 42, 3875-3886.	2.7	13
63	Lactic Acid: A New Application as an Efficient Catalyst for the Green One-Pot Synthesis of 2-Hydroxy-12-aryl-8, 9, 10, 12-Tetrahydrobenzo[a]xanthene-11-one and 12-Aryl-8,9,10,12-Tetrahydrobenzo[a]xanthen-11-one Analogs. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 533-538.	1.5	13
64	Reaction between Isocyanides and N,N′-Dimethylbarbituric Acid. Synthesis of Push–Pull Olefinic Systems. Journal of Chemical Research, 2001, 2001, 272-274.	1.3	12
65	A Practical Method for Synthesis of Stable Phosphorus Ylides in the Presence of Polyacrylamide in Aqueous Media. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 2578-2583.	1.6	12
66	Kinetics and Mechanism Investigation of the Reaction between Triphenylphosphine, Diâ€ <i>tert</i> â€butyl Acetylenedicarboxilate and OHâ€Acid. Chinese Journal of Chemistry, 2010, 28, 719-726.	4.9	12
67	Synthesis of 1â€(Cyclohexylamino)â€2â€(aryl)pyrrolo[1,2â€a]quinolineâ€3â€carbonitrile Derivatives Using a Mild Fourâ€Component Reaction. Journal of Heterocyclic Chemistry, 2014, 51, E152.	,2.6	12
68	Metal-free greener method for the synthesis of densely functionalized pyrroles via a one-pot three-component reaction. Journal of the Iranian Chemical Society, 2019, 16, 111-116.	2.2	12
69	Dynamic ¹ H NMR investigation along with a theoretical study around the C–C and C = C bonds in a particular phosphorus ylide. Journal of Physical Organic Chemistry, 2012, 25, 1328-1335.	1.9	11
70	Introduction of antimony triiodide (SbI3) as a new and efficient catalyst for synthesis of polyfunctionalized piperidines. Research on Chemical Intermediates, 2016, 42, 8109-8117.	2.7	11
71	Alpha-Casein: an efficient, green, novel, and eco-friendly catalyst for one-pot multi-component synthesis of bis (pyrazol-5-ols), dihydro-pyrano[2,3-c]pyrazoles and spiropyranopyrazoles in an environmentally benign manner. Journal of the Iranian Chemical Society, 2019, 16, 1651-1664.	2.2	11
72	Design and Synthesis, Antimicrobial Activities of 1,2,4-Triazine Derivatives as Representation of a New Hetrocyclic System. Polycyclic Aromatic Compounds, 2022, 42, 1-12.	2.6	11

#	Article	IF	CITATIONS
73	Mineral elements and essential oil contents of Scutellaria luteo-caerulea Bornm. & Snit. Avicenna Journal of Phytomedicine, 2014, 4, 182-90.	0.2	11
74	Synthesis of heterocyclic phosphonato esters by reaction between triphenyl phosphite and acetylenic diesters in the presence of sulfur-containing heterocyclic compounds. Journal of Sulfur Chemistry, 2009, 30, 500-506.	2.0	10
75	Novel synthesis of stable 1,5-diionic organophosphorus compounds from the reaction between triphenylphosphine and acetylenedicarboxylic acid in the presence of N–H heterocyclic compounds. Monatshefte Für Chemie, 2012, 143, 1681-1685.	1.8	10
76	A Novel Route for the Diastereoselective Synthesis of Dispiro[tetrahydroquinolineâ€bis(2,2â€dimethyl[1,3]dioxaneâ€4,6â€dione)] Derivatives via a Oneâ€Pot Domino Multicomponent Reaction of Arylamines, Aromatic Aldehydes, and Meldrum's Acid. Journal of Heterocyclic Chemistry, 2015, 52, 873-879.	2.6	10
77	Multicomponent Facile Synthesis of Highly Substituted [1,2,4]Triazolo[1,5- <i>a</i>] Pyrimidines. Journal of Chemical Research, 2016, 40, 458-460.	1.3	10
78	One-Pot Condensation Approach for Synthesis of Diverse Naphthopyranopyrimidines Utilizing Lactic Acid as Efficient and Eco-Friendly Catalyst. Polycyclic Aromatic Compounds, 2019, 39, 311-317.	2.6	10
79	Uric Acid as a Naturally Biodegradable and Reusable Catalyst for the Convenient and Eco-Safe Synthesis of Biologically Active Pyran Annulated Heterocyclic Systems. Polycyclic Aromatic Compounds, 2020, , 1-17.	2.6	10
80	A Facile Synthesis and Theoretical Study of Novel Stable Heterocyclic Phosphorus Ylides Containing a 2,4-Dimethyl-3-acetyl Moiety. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 559-566.	1.6	9
81	Triphenylarsine as an Efficient Catalyst in Diastereospecific Synthesis of N-Vinyl Heterocyclic Compounds. Synthetic Communications, 2011, 41, 569-578.	2.1	9
82	Stereoselective Synthesis of $1\hat{a}\in^2,5\hat{a}\in^2,7\hat{a}\in^2,8\hat{a}\in^2$ -Tetrahydro- $2\hat{a}\in^2$ H,4 $\hat{a}\in^2$ H-Dispiro[[1,3] Dioxane-5,3 $\hat{a}\in^2$ -Quinoline-6 $\hat{a}\in^2,5\hat{a}\in^3$ -[1 $\hat{a}\in^3,3\hat{a}\in^3$]Dioxane]-4,4 $\hat{a}\in^3,6,6\hat{a}\in^3$ -Tetrone Derivatives in the Presence of B Efficient Catalyst Via One-Pot Multicomponent Reaction. Journal of Chemical Research, 2014, 38, 383-386.	enzoic Aci 1.3	id _g as an
83	Synthesis of 2,3,5,6-tetrafluoro-pyridine derivatives from reaction of pentafluoropyridine with malononitrile, piperazine and tetrazole-5-thiol. SpringerPlus, 2015, 4, 757.	1.2	9
84	Dynamic 1 H NMR studies of hindered internal rotations in the synthesized particular phosphorus ylide: Experimental and theoretical approaches. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 145, 410-416.	3.9	9
85	Full kinetics and a mechanistic investigation of three-component reaction catalyzed by sodium acetate leading to 3,4-dihydropyrano[c]chromene. Research on Chemical Intermediates, 2015, 41, 5821-5837.	2.7	9
86	Efficient One-Pot Three-Component Synthesis of 3,4,5-Substituted Furan-2(5 <i>H</i>)-ones Catalyzed Watermelon Juice. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 423-427.	0.6	9
87	Synthesis of novel thiazolo[3,2â€ <i>a</i>]chromeno[4,3â€ <i>d</i>]pyrimidineâ€6(7 <i>H</i>)â€ones by bioactive Fe ₃ O ₄ @gly@thiophen@Cu(NO ₃) ₂ as reusable magnetic nanocatalyst. Applied Organometallic Chemistry, 2020, 34, e5797.	e 3.5	9
88	Solvent Effects on the Chemoselectivity of Stable Phosphorus Ylides Involving a Sulfonamide. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 2135-2141.	1.6	8
89	An Efficient Oneâ€pot Access to Substituted Dihydropyrrolâ€2â€one Derivatives Using Sucrose as Natural, Biodegradable and Inexpensive Catalyst. Journal of the Chinese Chemical Society, 2014, 61, 217-220.	1.4	8
90	Sodium carbonate-catalyzed Claisen–Schmidt condensation: one-pot synthesis of highly functionalized cyclohexenones under environmental conditions. Research on Chemical Intermediates, 2016, 42, 2233-2246.	2.7	8

#	Article	IF	CITATIONS
91	Efficient synthesis of new pyrano[2,3-d]pyrimidine-2,4-dione derivatives via a one-pot four-component reaction. Journal of the Iranian Chemical Society, 2017, 14, 1189-1193.	2.2	8
92	Essential oil composition of Eucalyptus microtheca and Eucalyptus viminalis. Avicenna Journal of Phytomedicine, 2015, 5, 540-52.	0.2	8
93	A Green Approach for the Oneâ€Pot, Threeâ€Component Synthesis of 2â€Arylpyrroloacridinâ€1(2 <i>H</i>)â€One using Lactic Acid as a Bioâ€based Catalyst under Solventâ€Free Conditions. Journal of the Chinese Chemical Society, 2017, 64, 1071-1078.	2S 1.4	7
94	Et3N catalyzed the diastereoselective synthesis of functionalized cyclohexanones by condensation of acetoacetanilide and various aldehydes in mild conditions. Research on Chemical Intermediates, 2018, 44, 2111-2122.	2.7	7
95	Synthesis of 3-aminoisoxazolmethylnaphthols via one-pot three-component reaction under solvent-free conditions. Research on Chemical Intermediates, 2018, 44, 7449-7458.	2.7	7
96	Facile and Convenient Synthesis of 5-Arylalkylidenerhodanines by Electrocatalytic Crossed Aldol Condensation. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 672-677.	1.6	6
97	Diastereoselective and One-Pot Synthesis of Highly Substituted Cyclohexenones Using Claisen–Schmidt Condensation and Michael Addition. Journal of Chemical Research, 2015, 39, 509-514.	1.3	6
98	Efficient and extremely facile one-pot four-component synthesis of mono and bis-N-aryl/alkyl-3-aminodihydropyrrol-2-one-4-carboxylates catalyzed by p-TsOH·H2O. Research on Chemical Intermediates, 2015, 41, 2503-2511.	2.7	6
99	Facile Diastereoselective Synthesis of Functionalized Tetrahydropyridines Using Fe ₃ O ₄ /SiO ₂ /TiO ₂ Nanocomposites. Organic Preparations and Procedures International, 2018, 50, 375-383.	1.3	6
100	Stereoselective Synthesis of Polysubstituted Hydroquinolines in a One-pot, Pseudo-Eight-Component Strategy. Organic Preparations and Procedures International, 2019, 51, 576-582.	1.3	6
101	Experimental and computational studies on the synthesis of diastereoselective natural-based Meldrum spiro dibenzofuran derivatives. New Journal of Chemistry, 2019, 43, 6615-6621.	2.8	6
102	AIM analysis, synthetic, kinetic and mechanistic investigations of the reaction between triphenylphosphine and dialkyl acetylenedicarboxylate in the presence of 3-methoxythiophenol. Journal of Chemical Sciences, 2013, 125, 387-399.	1.5	5
103	Synthesis of Stable Carbamate Phosphorus Ylides by a Four-Component Reaction And Dynamic ¹ H-Nmr Study of the Energy Barriers for the Rotation around the Carbon–Nitrogen Single Bond and the Carbon–Carbon Double Bond. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1410-1421.	1.6	5
104	The First Effort for the Preparation of Amidoalkyl Naphthoquinone Skeleton Based on Solvent-Free Multicomponent Reaction. Polycyclic Aromatic Compounds, 2022, 42, 558-567.	2.6	5
105	Reaction of pentafluoropyridine with oxime nucleophiles via SNAr reactions for preparation of new p-substituted tetrafluoropyridyl derivatives. Monatshefte Für Chemie, 2015, 146, 1913-1919.	1.8	4
106	A Quick and Clean Procedure for Synthesis of <i>α</i> â€Aminophosphonates in Aqueous Media. Heteroatom Chemistry, 2015, 26, 322-328.	0.7	4
107	Diastereoselective Synthesis of Novel Benzofuran Derivatives by Euparin as a Natural Compound with DMAD in the Presence of Trialkyl Phosphite. Heteroatom Chemistry, 2016, 27, 102-107.	0.7	4
108	A Green, Novel and Efficient Protocol for the Preparation of Diverse 4H-Pyrans: The First Report on the Catalytic Activity of Water Extract of Elaeagnus angustifolia Leaves in Organic Reactions. Polycyclic Aromatic Compounds, 2020, 40, 1524-1533.	2.6	4

#	Article	IF	CITATIONS
109	Synthesis, characterization, and application of CoFe2O4@TRIS@sulfated boric acid nanocatalyst for the synthesis of 2-amino-3-cyanopyridine derivatives. Research on Chemical Intermediates, 2021, 47, 1315-1330.	2.7	4
110	Synthesis and characterization of a novel and reusable Fe3O4@THAM-CH2CH2-SCH2CO2H magnetic nanocatalyst for highly efficient preparation of xanthenes and 3-aminoisoxazoles in green conditions. Research on Chemical Intermediates, 2021, 47, 5007-5025.	2.7	4
111	Full Kinetics and a Mechanistic Investigation of the Green Protocol for Synthesis of β-Aminoketone in the Presence of Saccharose as a Catalyst by a One-Pot Three-Component Reaction. Advances in Physical Chemistry, 2014, 2014, 1-8.	2.0	3
112	A novel one-pot synthesis of symmetric dialkyl 2,5-bis((2,6-dimethylphenyl)imino)-2,5-dihydrofuran-3,4-dicarboxylate derivatives. Research on Chemical Intermediates, 2014, 40, 779-785.	2.7	3
113	The Hindered Internal Rotations in a Particular Phosphorane Involving a 6-aza Thiothymine: An Experimental Dynamic 1H NMR Study with Three Methods of Determining Activation Parameters. Applied Magnetic Resonance, 2015, 46, 1179-1188.	1.2	3
114	Synthesis of 2-Aryl-2,3-Dihydroquinazolin-4(1H)-One Derivatives Using Lactic Acid as a Green, Natural and Inexpensive Catalyst in Water. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 1929-1933.	1.5	3
115	1,4-Dithiane-2,5-diol in the synthesis of thiophenes (microreview). Chemistry of Heterocyclic Compounds, 2018, 54, 581-583.	1.2	3
116	Utilizing an Old Idea for the Three-Component Synthesis of Anthraquinone-Scaffold-Based Enaminodiones (2,2-Diacylethenamines). Polycyclic Aromatic Compounds, 2022, 42, 582-592.	2.6	3
117	Facile Construction of 1 <i>H</i> -Pyrazolo[1,2- <i>a</i>]pyridazine-5,8-diones via Acid-promoted One-pot Three-component Reaction. Organic Preparations and Procedures International, 2020, 52, 238-241.	1.3	3
118	1H NMR Kinetic Investigation of the Equilibrium between the Z- and E-Isomers in a Stable Phosphorus Ylide Involving 2-Mercaptobenzimidazole. Progress in Reaction Kinetics and Mechanism, 2013, 38, 295-304.	2.1	2
119	Synthesis of 2-tetrafluoropyridyl-4,5-disubstituted 1,2,3-triazoles. SpringerPlus, 2016, 5, 1961.	1.2	2
120	Novel (4-oxothiazolidine-2-ylidene)benzamide derivatives: synthesis, characterization and crystal structures. Research on Chemical Intermediates, 2017, 43, 4189-4199.	2.7	2
121	Synthesis and crystal structures of novel (4â€phenylthiazolâ€2(3H)â€ylidene) benzamide and ((benzoylimino)â€3â€{9,10â€dioxoâ€9,10â€dihydroanthracenâ€1â€yl)â€4â€oxothiazolidinâ€5â€ylidene)acetate Heteroatom Chemistry, 2017, 28, .	de r ivative	इ.स. ह
122	Eco-Friendly and Facile Approach Toward a One-Pot Synthesis of 2-Arylpyrrolo[2,3,4-kl]acridin-1(2H)-ones Catalyzed by Acetic Acid Under Solvent-Free Conditions. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 1253-1258.	1.5	2
123	Three omponent Synthesis of Tetrazolo Anthraquinone as a Representation of a New Heterocyclic System. ChemistrySelect, 2019, 4, 5315-5318.	1.5	2
124	An efficient oneâ€pot synthesis of 2â€aminopyrimidinomethylnaphtols under solventâ€free conditions. Journal of the Chinese Chemical Society, 2019, 66, 543-547.	1.4	2
125	CeCl ₃ -Catalyzed a Highly Efficient and Eco-friendly Synthesis of New and Densely Functionalized Thiazolo[3,2- <i>a</i>]Pyrimidins <i>via</i> Biginelli-type Reaction. Polycyclic Aromatic Compounds, 2020, 40, 732-742.	2.6	2
126	Facile oneâ€pot threeâ€component route to an assembly of <scp>2â€aminoâ€4<i>H</i></scp> â€chromenes and spirochromenes promoted via ceria nanoparticles in a benign manner. Bulletin of the Korean Chemical Society, 2022, 43, 836-843.	1.9	2

#	Article	IF	CITATIONS
127	1H NMR spectroscopic investigation of the kinetics of the equilibrium between Z and E isomers. Research on Chemical Intermediates, 2014, 40, 2729-2736.	2.7	1
128	Reaction of hydroxylated naphtoquinones/antraquinones with pentafluoropyridine. SpringerPlus, 2016, 5, 110.	1.2	1
129	Two stereoisomers of butenedioic acid-mediated synthesis of tetrahydropyridine carboxylate derivatives with the same stereochemistry. Research on Chemical Intermediates, 2018, 44, 675-690.	2.7	1
130	Pseudo-three-component synthesis of substituted 1,2,4-triazolo[1,5-a]pyridines. Monatshefte FÃ1⁄4r Chemie, 2020, 151, 93-98.	1.8	1
131	Green and catalyst-free synthesis of aminoanthraquinone derivatives in solvent-free conditions. Research on Chemical Intermediates, 2021, 47, 3597-3608.	2.7	1
132	Determination of the relative stability of the two gauche and anti-configurations in the synthesis of new β-aminophosphonate esters: theoretical studies. Research on Chemical Intermediates, 2014, 40, 2703-2719.	2.7	0
133	Dynamic 1H NMR studies around the heteroaryl–carbon (N CHâ `N) and nitrogen–carbon (N C=CH) single bonds in a particular enaminoester involving a phenanthridine along with theoretical calculations. Research on Chemical Intermediates, 2015, 41, 3307-3317.	2.7	Ο
134	An efficient one-pot synthesis of C-alkylated phenols and benzofuran derivatives with phosphanylidene substituents. Research on Chemical Intermediates, 2015, 41, 2609-2617.	2.7	0
135	Reaction of hydroxyl-quinoline with pentafluoropyridin. SpringerPlus, 2016, 5, 1996.	1.2	Ο
136	MNPs–PhSO3H: A Sustainable, Recyclable and Eco-Friendly Catalyst Promoting the Green Synthesis of 3-Aminoisoxazolmethylnaphthols Under Solvent–Free Conditions. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 1379-1385.	1.5	0
137	Synthesis of Tri- and Tetra- Phenyl Substituted 1H-imidazoles in the Presence of Chitin and Pectin as Natural Catalyst. Current Catalysis, 2021, 10, 154-161.	0.5	Ο
138	A Facile Synthesis of Stable Heterocyclic Phosphorus Ylides. Journal of Chemical Research, 1999, 23, 216-217.	1.3	0
139	Vinylphosphonium Salt Mediated Efficient Synthesis of Dialkyl 1H-Pyrrolizine-2,3-dicarboxylates. Journal of Chemical Research, 1999, 23, 382-383.	1.3	0