Zheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9453013/publications.pdf

Version: 2024-02-01

33	1,399	18	35
papers	citations	h-index	g-index
35	35	35	1596
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Heterogeneously-catalyzed aerobic oxidation of furfural to furancarboxylic acid with CuO-Promoted MnO2. Green Energy and Environment, 2023, 8, 1683-1692.	8.7	1
2	Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding. Carbohydrate Polymers, 2022, 280, 119018.	10.2	47
3	Insight into the catalytic mechanism of core–shell structured Ni/Ni-N/CN catalyst towards the oxidation of furfural to furancarboxylic acid. Fuel, 2022, 317, 123579.	6.4	11
4	Boosting the Acid Sites and Lattice Oxygen Activity of the Fe–Cu Catalyst for One-Pot Producing 2,5-Diformylfuran from Fructose. ACS Sustainable Chemistry and Engineering, 2022, 10, 421-430.	6.7	15
5	Removal of copper ions by cellulose nanocrystal-based hydrogel and reduced adsorbents for its catalytic properties. Cellulose, 2022, 29, 4525-4537.	4.9	10
6	Facile One-Pot Synthesis of Furan Double Schiff Base from 5-Hydroxymethylfurfural via an Amination–Oxidation–Amination Strategy in Water. ACS Sustainable Chemistry and Engineering, 2022, 10, 6835-6842.	6.7	5
7	Green Process for 5â€(Chloromethyl)furfural Production from Biomass in Threeâ€Constituent Deep Eutectic Solvent. ChemSusChem, 2021, 14, 847-851.	6.8	14
8	Depolymerization and Demethylation of Kraft Lignin in Molten Salt Hydrate and Applications as an Antioxidant and Metal Ion Scavenger. Journal of Agricultural and Food Chemistry, 2021, 69, 13568-13577.	5.2	20
9	Cleavage of ethers and demethylation of lignin in acidic concentrated lithium bromide (ACLB) solution. Green Chemistry, 2020, 22, 7989-8001.	9.0	43
10	Direct conversion of biomass derived <scp>l</scp> -rhamnose to 5-methylfurfural in water in high yield. Green Chemistry, 2020, 22, 5984-5988.	9.0	22
11	Butenolide Derivatives of Biobased Furans: Sustainable Synthetic Dyes. Angewandte Chemie - International Edition, 2019, 58, 17293-17296.	13.8	15
12	Butenolide Derivatives of Biobased Furans: Sustainable Synthetic Dyes. Angewandte Chemie, 2019, 131, 17453-17456.	2.0	5
13	An effective pathway for converting carbohydrates to biofuel 5-ethoxymethylfurfural via 5-hydroxymethylfurfural with deep eutectic solvents (DESs). Industrial Crops and Products, 2018, 112, 18-23.	5.2	69
14	Production of cellulosic gasoline <i>via</i> levulinic ester self-condensation. Green Chemistry, 2018, 20, 3804-3808.	9.0	16
15	Green process for production of 5-hydroxymethylfurfural from carbohydrates with high purity in deep eutectic solvents. Industrial Crops and Products, 2017, 99, 1-6.	5.2	109
16	Chemical Structure Change of Magnesium Oxide in the Wet Oxidation Delignification Process of Biomass with Solid Alkali. ChemCatChem, 2017, 9, 2544-2549.	3.7	16
17	Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem, 2017, 10, 2696-2706.	6.8	269
18	New bio-based monomers: tuneable polyester properties using branched diols from biomass. Faraday Discussions, 2017, 202, 61-77.	3.2	44

#	Article	IF	CITATIONS
19	Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem, 2017, 10, 2695-2695.	6.8	15
20	Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum. Bioprocess and Biosystems Engineering, 2016, 39, 1129-1136.	3.4	36
21	Stable and efficient CuCr catalyst for the solvent-free hydrogenation of biomass derived ethyl levulinate to Î ³ -valerolactone as potential biofuel candidate. Fuel, 2016, 175, 232-239.	6.4	33
22	Tandem thionation of biomass derived levulinic acid with Lawesson's reagent. Green Chemistry, 2016, 18, 2971-2975.	9.0	14
23	Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum. Bioresources and Bioprocessing, 2016, 3, .	4.2	39
24	One-pot conversion of biomass-derived carbohydrates into 5-[(formyloxy)methyl]furfural: A novel alternative platform chemical. Industrial Crops and Products, 2016, 83, 408-413.	5 . 2	29
25	Green catalytic conversion of bio-based sugars to 5-chloromethyl furfural in deep eutectic solvent, catalyzed by metal chlorides. RSC Advances, 2016, 6, 27004-27007.	3. 6	42
26	Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp Bioresource Technology, 2015, 191, 385-390.	9.6	21
27	Methyl 4-methoxypentanoate: a novel and potential downstream chemical of biomass derived gamma-valerolactone. RSC Advances, 2015, 5, 8297-8300.	3. 6	5
28	Depolymerization of Cellulolytic Enzyme Lignin for the Production of Monomeric Phenols over Raney Ni and Acidic Zeolite Catalysts. Energy & Energy & 1662-1668.	5.1	61
29	Inâ€Situ Catalytic Hydrogenation of Biomassâ€Derived Methyl Levulinate to γâ€Valerolactone in Methanol. ChemSusChem, 2015, 8, 1601-1607.	6.8	56
30	Inâ€Situ Generated Catalyst System to Convert Biomassâ€Derived Levulinic Acid to γâ€Valerolactone. ChemCatChem, 2015, 7, 1372-1379.	3.7	62
31	Atom-economical synthesis of \hat{I}^3 -valerolactone with self-supplied hydrogen from methanol. Chemical Communications, 2015, 51, 16320-16323.	4.1	13
32	Production of \hat{l}^3 -valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renewable and Sustainable Energy Reviews, 2014, 40, 608-620.	16.4	232
33	<i>In-Situ</i> -Prepared Nanocopper-Catalyzed Hydrogenation–Liquefaction of Biomass in a Glycerol–Methanol Solvent for Biofuel Production. Energy & Description (2014), 28, 4273-4281.	5.1	7