
Archna Sharma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9452919/publications.pdf Version: 2024-02-01

ΔΡΟΗΝΑ SHADMA

#	Article	IF	CITATIONS
1	Cold-inducible RNA-binding protein activates splenic T cells during sepsis in a TLR4-dependent manner. Cellular and Molecular Immunology, 2018, 15, 38-47.	4.8	41
2	PYR-41, A Ubiquitin-Activating Enzyme E1 Inhibitor, Attenuates Lung Injury in Sepsis. Shock, 2018, 49, 442-450.	1.0	21
3	The protective role of human ghrelin in sepsis: Restoration of CD4 T cell proliferation. PLoS ONE, 2018, 13, e0201139.	1.1	10
4	Mitigation of sepsis-induced inflammatory responses and organ injury through targeting Wnt/β-catenin signaling. Scientific Reports, 2017, 7, 9235.	1.6	41
5	Regulation of SATB1 during thymocyte development by TCR signaling. Molecular Immunology, 2016, 77, 34-43.	1.0	23
6	Cold-inducible RNA-binding protein causes endothelial dysfunction via activation of Nlrp3 inflammasome. Scientific Reports, 2016, 6, 26571.	1.6	81
7	β-Catenin is required for the differentiation of iNKT2 and iNKT17 cells that augment IL-25-dependent lung inflammation. BMC Immunology, 2015, 16, 62.	0.9	17
8	Milk fat globule epidermal growth factor-factor 8-derived peptide attenuates organ injury and improves survival in sepsis. Critical Care, 2015, 19, 375.	2.5	24
9	Receptor-Interacting Protein Kinase 3 Deficiency Delays Cutaneous Wound Healing. PLoS ONE, 2015, 10, e0140514.	1.1	13
10	Blocking Cold-Inducible RNA-Binding Protein Protects Liver From Ischemia-Reperfusion Injury. Shock, 2015, 43, 24-30.	1.0	72
11	Differential alterations of tissue T-cell subsets after sepsis. Immunology Letters, 2015, 168, 41-50.	1.1	41
12	Upregulation of GRAIL Is Associated with Impaired CD4 T Cell Proliferation in Sepsis. Journal of Immunology, 2014, 192, 2305-2314.	0.4	27
13	Receptor-interacting protein kinase 3 deficiency inhibits immune cell infiltration and attenuates organ injury in sepsis. Critical Care, 2014, 18, R142.	2.5	40
14	The AGC kinase SGK1 regulates TH1 and TH2 differentiation downstream of the mTORC2 complex. Nature Immunology, 2014, 15, 457-464.	7.0	163
15	T Cell Factor-1 Controls the Lifetime of CD4+ CD8+ Thymocytes In Vivo and Distal T Cell Receptor α-Chain Rearrangement Required for NKT Cell Development. PLoS ONE, 2014, 9, e115803.	1.1	12
16	Molecular basis for the tissue specificity of \hat{I}^2 -catenin oncogenesis. Oncogene, 2013, 32, 1901-1909.	2.6	15
17	IL-4 and IL-4 Receptor Expression Is Dispensable for the Development and Function of Natural Killer T Cells. PLoS ONE, 2013, 8, e71872.	1.1	2
18	T Cell Factor-1 and β-Catenin Control the Development of Memory-like CD8 Thymocytes. Journal of Immunology, 2012, 188, 3859-3868.	0.4	27

ARCHNA SHARMA

#	Article	IF	CITATIONS
19	T Cell Factor-1 Negatively Regulates Expression of IL-17 Family of Cytokines and Protects Mice from Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2011, 186, 3946-3952.	0.4	60
20	TCF1 and \hat{I}^2 -catenin regulate T cell development and function. Immunologic Research, 2010, 47, 45-55.	1.3	74
21	Sustained Expression of Pre-TCR Induced β-Catenin in Post-β-Selection Thymocytes Blocks T Cell Development. Journal of Immunology, 2009, 182, 759-765.	0.4	16
22	Pre-TCR-Induced β-Catenin Facilitates Traversal through β-Selection. Journal of Immunology, 2009, 182, 751-758.	0.4	26
23	T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-l ³ . Nature Immunology, 2009, 10, 992-999.	7.0	179
24	Specific and Randomly Derived Immunoactive Peptide Mimotopes of Mycobacterial Antigens. Vaccine Journal, 2006, 13, 1143-1154.	3.2	17
25	Antagonists of Hsp16.3, a Low-Molecular-Weight Mycobacterial Chaperone and Virulence Factor, Derived from Phage-Displayed Peptide Libraries. Applied and Environmental Microbiology, 2005, 71, 7334-7344	1.4	11