Lorenza Draghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9452806/publications.pdf

Version: 2024-02-01

686830 642321 24 840 13 23 citations h-index g-index papers 25 25 25 1544 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	An Implantable Electronic Device for Monitoring Fetal Lung Pressure in a Lamb Model of Congenital Diaphragmatic Hernia. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	2.4	3
2	Graphene nanoplatelets composite membranes for thermal comfort enhancement in performance textiles. Journal of Applied Polymer Science, 2021, 138, 49645.	1.3	13
3	In Vitro Models for the Development of Peripheral Nerve Conduits, Part I: Design of a Fibrin Gel-Based Non-Contact Test. Polymers, 2021, 13, 3573.	2.0	2
4	Bottom-up engineering of cell-laden hydrogel microfibrous patch for guided tissue regeneration. Materials Science and Engineering C, 2020, 108, 110488.	3.8	17
5	Cross-Linking Optimization for Electrospun Gelatin: Challenge of Preserving Fiber Topography. Polymers, 2020, 12, 2472.	2.0	21
6	Cross-Linking Strategies for Electrospun Gelatin Scaffolds. Materials, 2019, 12, 2476.	1.3	154
7	An injectable, degradable hydrogel plug for tracheal occlusion in congenital diaphragmatic hernia (CDH). Materials Science and Engineering C, 2019, 99, 430-439.	3.8	12
8	3D Encapsulation Made Easy: A Coaxial-Flow Circuit for the Fabrication of Hydrogel Microfibers Patches. Bioengineering, 2019, 6, 30.	1.6	5
9	Hierarchical microchannel architecture in chitosan/bioactive glass scaffolds via electrophoretic deposition positiveâ€replica. Journal of Biomedical Materials Research - Part A, 2019, 107, 1455-1465.	2.1	12
10	Bactericidal activity of gallium-doped chitosan coatings against staphylococcal infection. Journal of Applied Microbiology, 2019, 126, 87-101.	1.4	15
11	Biopolymer-based strategies in the design of smart medical devices and artificial organs. International Journal of Artificial Organs, 2018, 41, 337-359.	0.7	54
12	Silk fabrics modification by sol–gel method. Textile Reseach Journal, 2018, 88, 99-107.	1.1	5
13	Electrospun silk fibroin–gelatin composite tubular matrices as scaffolds for small diameter blood vessel regeneration. Journal of Materials Science: Materials in Medicine, 2017, 28, 80.	1.7	40
14	Composite Colloidal Gels Made of Bisphosphonateâ∈Functionalized Gelatin and Bioactive Glass Particles for Regeneration of Osteoporotic Bone Defects. Advanced Functional Materials, 2017, 27, 1703438.	7.8	71
15	Electrospun ECM macromolecules as biomimetic scaffold for regenerative medicine: challenges for preserving conformation and bioactivity. AIMS Materials Science, 2017, 4, 638-669.	0.7	18
16	The Effect of Scaffold Pore Size in Cartilage Tissue Engineering. Journal of Applied Biomaterials and Functional Materials, 2016, 14, e223-e229.	0.7	101
17	Polymeric Materials as Artificial Muscles: An Overview. Journal of Applied Biomaterials and Functional Materials, 2015, 13, 1-9.	0.7	32
18	Programmed cell delivery from biodegradable microcapsules for tissue repair. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 1002-1012.	1.9	15

#	Article	IF	CITATION
19	In vivocytotoxic evaluation of Ti–Ni–Fe shape memory alloys. Materials Technology, 2014, 29, 139-143.	1.5	3
20	Morphology tuning of chitosan films via electrochemical deposition. Materials Letters, 2012, 78, 18-21.	1.3	34
21	Skin-derived stem cells transplanted into resorbable guides provide functional nerve regeneration after sciatic nerve resection. Glia, 2007, 55, 425-438.	2.5	80
22	Bioabsorbable scaffold forÂinÂsitu bone regeneration. Biomedicine and Pharmacotherapy, 2006, 60, 386-392.	2.5	12
23	Microspheres leaching for scaffold porosity control. Journal of Materials Science: Materials in Medicine, 2005, 16, 1093-1097.	1.7	119
24	2D and 3D Electrospun Silk Fibroin Gelatin Coatings to Improve Scaffold Performances in Cardiovascular Applications. , 0, , .		2