Lorenza Draghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9452806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cross-Linking Strategies for Electrospun Gelatin Scaffolds. Materials, 2019, 12, 2476.	2.9	154
2	Microspheres leaching for scaffold porosity control. Journal of Materials Science: Materials in Medicine, 2005, 16, 1093-1097.	3.6	119
3	The Effect of Scaffold Pore Size in Cartilage Tissue Engineering. Journal of Applied Biomaterials and Functional Materials, 2016, 14, e223-e229.	1.6	101
4	Skin-derived stem cells transplanted into resorbable guides provide functional nerve regeneration after sciatic nerve resection. Glia, 2007, 55, 425-438.	4.9	80
5	Composite Colloidal Gels Made of Bisphosphonateâ€Functionalized Gelatin and Bioactive Glass Particles for Regeneration of Osteoporotic Bone Defects. Advanced Functional Materials, 2017, 27, 1703438.	14.9	71
6	Biopolymer-based strategies in the design of smart medical devices and artificial organs. International Journal of Artificial Organs, 2018, 41, 337-359.	1.4	54
7	Electrospun silk fibroin–gelatin composite tubular matrices as scaffolds for small diameter blood vessel regeneration. Journal of Materials Science: Materials in Medicine, 2017, 28, 80.	3.6	40
8	Morphology tuning of chitosan films via electrochemical deposition. Materials Letters, 2012, 78, 18-21.	2.6	34
9	Polymeric Materials as Artificial Muscles: An Overview. Journal of Applied Biomaterials and Functional Materials, 2015, 13, 1-9.	1.6	32
10	Cross-Linking Optimization for Electrospun Gelatin: Challenge of Preserving Fiber Topography. Polymers, 2020, 12, 2472.	4.5	21
11	Electrospun ECM macromolecules as biomimetic scaffold for regenerative medicine: challenges for preserving conformation and bioactivity. AIMS Materials Science, 2017, 4, 638-669.	1.4	18
12	Bottom-up engineering of cell-laden hydrogel microfibrous patch for guided tissue regeneration. Materials Science and Engineering C, 2020, 108, 110488.	7.3	17
13	Programmed cell delivery from biodegradable microcapsules for tissue repair. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 1002-1012.	3.5	15
14	Bactericidal activity of gallium-doped chitosan coatings against staphylococcal infection. Journal of Applied Microbiology, 2019, 126, 87-101.	3.1	15
15	Graphene nanoplatelets composite membranes for thermal comfort enhancement in performance textiles. Journal of Applied Polymer Science, 2021, 138, 49645.	2.6	13
16	Bioabsorbable scaffold forÂinÂsitu bone regeneration. Biomedicine and Pharmacotherapy, 2006, 60, 386-392.	5.6	12
17	An injectable, degradable hydrogel plug for tracheal occlusion in congenital diaphragmatic hernia (CDH). Materials Science and Engineering C, 2019, 99, 430-439.	7.3	12
18	Hierarchical microchannel architecture in chitosan/bioactive glass scaffolds via electrophoretic deposition positiveâ€replica. Journal of Biomedical Materials Research - Part A, 2019, 107, 1455-1465.	4.0	12

LORENZA DRAGHI

#	Article	IF	CITATIONS
19	Silk fabrics modification by sol–gel method. Textile Reseach Journal, 2018, 88, 99-107.	2.2	5
20	3D Encapsulation Made Easy: A Coaxial-Flow Circuit for the Fabrication of Hydrogel Microfibers Patches. Bioengineering, 2019, 6, 30.	3.5	5
21	In vivocytotoxic evaluation of Ti–Ni–Fe shape memory alloys. Materials Technology, 2014, 29, 139-143.	3.0	3
22	An Implantable Electronic Device for Monitoring Fetal Lung Pressure in a Lamb Model of Congenital Diaphragmatic Hernia. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	4.7	3
23	2D and 3D Electrospun Silk Fibroin Gelatin Coatings to Improve Scaffold Performances in Cardiovascular Applications. , 0, , .		2
24	In Vitro Models for the Development of Peripheral Nerve Conduits, Part I: Design of a Fibrin Gel-Based Non-Contact Test. Polymers, 2021, 13, 3573.	4.5	2