Keerti Rathi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9452283/keerti-rathi-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8	157	7	9
papers	citations	h-index	g-index
9	215	4.7 avg, IF	3.83
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
8	Fabrication of flexible La-MoS hybrid-heterostructure based sensor for NO gas sensing at room temperature. <i>Nanotechnology</i> , 2020 , 31, 395504	3.4	7
7	Fabrication of MoSe2©raphene Hybrid Nanoflakes for Toxic Gas Sensor with Tunable Sensitivity. Advanced Materials Interfaces, 2020 , 7, 2000140	4.6	14
6	Ruthenium-decorated tungsten disulfide quantum dots for a CO gas sensor. <i>Nanotechnology</i> , 2020 , 31, 135502	3.4	13
5	Wireless Hand-Held Device Based on Polylactic Acid-Protected, Highly Stable, CTAB-Functionalized Phosphorene for CO Gas Sensing. <i>ACS Applied Materials & Action Mate</i>	9.5	7
4	Synthesis, characterization of graphene oxide wrapped silicon carbide for excellent mechanical and damping performance for aerospace application. <i>Journal of Alloys and Compounds</i> , 2018 , 740, 436-445	5.7	25
3	Impact of Doping on GO: Fast Response-Recovery Humidity Sensor. ACS Omega, 2017, 2, 842-851	3.9	46
2	Effect of carbon derivatives in sulfonated poly(etherimide)-liquid crystal polymer composite for methanol vapor sensing. <i>Nanotechnology</i> , 2017 , 28, 205501	3.4	6
1	Effective energy harvesting from a single electrode based triboelectric nanogenerator. <i>Scientific Reports</i> , 2016 , 6, 38835	4.9	38