Yuya Morimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9451857/publications.pdf Version: 2024-02-01

Υμγλ Μοριμοτα

#	Article	IF	CITATIONS
1	Skeletal muscleâ€adipose cocultured tissue fabricated using cell″aden microfibers and a hydrogel sheet. Biotechnology and Bioengineering, 2022, 119, 636-643.	1.7	7
2	3D printed microfluidic devices for lipid bilayer recordings. Lab on A Chip, 2022, 22, 890-898.	3.1	14
3	In Vitro Skeletal Muscle Tissue with Edible Hydrogel Toward Fabrication of Cultured Meat in Macroscopic Size. , 2022, , .		0
4	On-Site Formation of Lipid Bilayer Arrays with An Air/Liquid Interface. , 2022, , .		0
5	Functional analysis of human brain endothelium using a microfluidic device integrating a cell culture insert. APL Bioengineering, 2022, 6, 016103.	3.3	6
6	Biohybrid Soft Robots Driven by Contractions of Skeletal Muscle Tissue. Journal of Robotics and Mechatronics, 2022, 34, 260-262.	0.5	2
7	3Dâ€Printed Centrifugal Pump Driven by Magnetic Force in Applications for Microfluidics in Biological Analysis. Advanced Healthcare Materials, 2022, 11, .	3.9	4
8	Living skin on a robot. Matter, 2022, 5, 2190-2208.	5.0	15
9	Biohybrid Robot. Journal of the Robotics Society of Japan, 2021, 39, 310-313.	0.0	Ο
10	Biohybrid Micro Pinwheel Powered by Trapped Microalgae. , 2021, , .		0
11	Cell-Based Biohybrid Sensor Device for Chemical Source Direction Estimation. Cyborg and Bionic Systems, 2021, 2021, .	3.7	16
12	Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak. Npj Science of Food, 2021, 5, 6.	2.5	81
13	Monolithic Fabrication of a Lipid Bilayer Device Using Stereolithography. , 2021, , .		Ο
14	Microfluidic system for applying shear flow to endothelial cells on culture insert with collagen vitrigel membrane. Sensors and Actuators B: Chemical, 2021, 348, 130675.	4.0	7
15	Living Skin as a Self-Repairable Covering Material for Robots. , 2021, , .		Ο
16	A Cylindrical Molding Method for the Biofabrication of Plane-Shaped Skeletal Muscle Tissue. Micromachines, 2021, 12, 1411.	1.4	7
17	Stretchable and Perfusable Microfluidic Device for Cell Barrier Model. , 2020, , .		0
18	3D Pocket-Shape Dermis-Equivalent as a Skin Material for a Robotic Finger. , 2020, , .		0

3D Pocket-Shape Dermis-Equivalent as a Skin Material for a Robotic Finger. , 2020, , . 18

2

ΥυγΑ Μογιμοτο

#	Article	IF	CITATIONS
19	Formation of Micro-Size Perfusable Channels in mm-Thick Muscle Tissue. , 2020, , .		О
20	Locally-Patterned Parylene Membrane Enables Electrical Resistance Measurement for a Cellular Barrier Consisting of < 100 Cells. , 2020, , .		0
21	A dynamic microarray device for pairing and electrofusion of giant unilamellar vesicles. Sensors and Actuators B: Chemical, 2020, 311, 127922.	4.0	7
22	Micro Tissue Assembly for Co-Culturing 3D Skeletal Muscle and Adipose Tissues. , 2020, , .		0
23	Biohybrid robot with skeletal muscle tissue covered with a collagen structure for moving in air. APL Bioengineering, 2020, 4, 026101.	3.3	51
24	A swimming robot actuated by cultured skeletal muscle tissue. Transactions of the JSME (in Japanese), 2020, 86, 20-00180-20-00180.	0.1	3
25	Living dermis as a self-repairable coverage material for robots. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2020, 2020.11, 28A3-MN311.	0.0	Ο
26	In Situ Glugose Monitoring in 3D-Cultured Skeletal Muscle Tissues. , 2019, , .		1
27	Editorial for the Special Issue of Selected Papers from the 9th Symposium on Micro-Nano Science and Technology on Micromachines. Micromachines, 2019, 10, 618.	1.4	1
28	Centrifuge-based step emulsification device for simple and fast generation of monodisperse picoliter droplets. Sensors and Actuators B: Chemical, 2019, 301, 127164.	4.0	24
29	Temporal Observation of Adipocyte Microfiber Using Anchoring Device. Micromachines, 2019, 10, 358.	1.4	6
30	In Vitro Tissue Construction for Organ-on-a-Chip Applications. Bioanalysis, 2019, , 247-274.	0.1	0
31	Portable biohybrid odorant sensors using cell-laden collagen micropillars. Lab on A Chip, 2019, 19, 1971-1976.	3.1	15
32	Biohybrid device with antagonistic skeletal muscle tissue for measurement of contractile force. Advanced Robotics, 2019, 33, 208-218.	1.1	19
33	Perfusable and stretchable 3D culture system for skin-equivalent. Biofabrication, 2019, 11, 011001.	3.7	42
34	Application of fluid shear stress to engineered vascular wall using microchannel. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2019, 2019.10, 20am2PN307.	0.0	0
35	Transendothelial electrical resistance (TEER) measurement system of 3D tubular vascular channel. , 2018, , .		4
36	Pneumatically driven PDMS micropillars for the investigation of cell-cell interaction. , 2018, , .		0

Yuya Morimoto

#	Article	lF	CITATIONS
37	Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature Reviews Materials, 2018, 3, 21-37.	23.3	502
38	Editorial for the Special Issue of Selected Papers from the 8th Symposium on Micro–Nano Science and Technology on Micromachines. Micromachines, 2018, 9, 627.	1.4	0
39	Cell-laden micropillars detect gaseous odorants on a liquid-air interface. , 2018, , .		Ο
40	Multipoint Bending and Shape Retention of a Pneumatic Bending Actuator by a Variable Stiffness Endoskeleton. Soft Robotics, 2018, 5, 718-725.	4.6	37
41	Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues. Science Robotics, 2018, 3, .	9.9	170
42	Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line. Experimental Cell Research, 2018, 370, 168-173.	1.2	25
43	Three-dimensional printed microfluidic modules for design changeable coaxial microfluidic devices. Sensors and Actuators B: Chemical, 2018, 274, 491-500.	4.0	37
44	Formation of Branched and Chained Alginate Microfibers Using Theta-Glass Capillaries. Micromachines, 2018, 9, 303.	1.4	13
45	Cells smell on a CMOS: A portable odorant detection system using cell-laden collagen pillars. , 2017, , .		2
46	Parylene based flexible glucose sensor using glucose-responsive fluorescent hydrogel. , 2017, , .		1
47	Formation of vessel-like channel using alginate fiber as a sacrificial structure. , 2017, , .		2
48	Mass Production of Cell‣aden Calcium Alginate Particles with Centrifugal Force. Advanced Healthcare Materials, 2017, 6, 1601375.	3.9	33
49	Self-Propelled Motion of Monodisperse Underwater Oil Droplets Formed by a Microfluidic Device. Langmuir, 2017, 33, 5393-5397.	1.6	24
50	Skin integrated with perfusable vascular channels on a chip. Biomaterials, 2017, 116, 48-56.	5.7	203
51	Pesticide vapor sensing using an aptamer, nanopore, and agarose gel on a chip. Lab on A Chip, 2017, 17, 2421-2425.	3.1	46
52	Centrifuge-based membrane emulsification toward high-throughput generation of monodisperse liposomes. , 2017, , .		2
53	Construction and Application of Three-Dimensional Cellular Tissues Assembled by Point-, Line-, and Plane-Shaped Cellular Building Blocks. IEEJ Transactions on Sensors and Micromachines, 2017, 137, 322-327.	0.0	0
54	Balloon Pump with Floating Valves for Portable Liquid Delivery. Micromachines, 2016, 7, 39.	1.4	6

ΥυγΑ Μογιμοτο

#	Article	IF	CITATIONS
55	Stretchable culture device of skin-equivalent with improved epidermis thickness. , 2016, , .		1
56	Quantification of contractile property for functional drug testing with human iPS-derived cardiomyocytes. , 2016, , .		0
57	Catch a cell on a CMOS: Selective retrieval of single cell using a microplate technology performed on a CMOS imaging sensor. , 2016, , .		0
58	Human induced pluripotent stem cell-derived fiber-shaped cardiac tissue on a chip. Lab on A Chip, 2016, 16, 2295-2301.	3.1	52
59	Vessel-like channels supported by poly-l-lysine tubes. Journal of Bioscience and Bioengineering, 2016, 122, 753-757.	1.1	9
60	Pneumatic balloon actuator with tunable bending points. , 2015, , .		6
61	Cell-laden hinged microplates for measuring the contractile forces of cardiomyocytes. , 2015, , .		0
62	Electrical detection of pesticide vapors by biological nanopores with DNA aptamers. , 2015, , .		3
63	PDMS balloon pump with a microfluidic regulator for the continuous drug supply in low flow rate. , 2015, , .		1
64	Liquid-filled tunable lenticular lens. Journal of Micromechanics and Microengineering, 2015, 25, 035030.	1.5	16
65	Skin-equivalent integrated with perfusable channels on curved surface. , 2015, , .		3
66	3D human cardiac muscle on a chip: Quantification of contractile force of human iPS-derived cardiomyocytes. , 2015, , .		2
67	Point-, line-, and plane-shaped cellular constructs for 3D tissue assembly. Advanced Drug Delivery Reviews, 2015, 95, 29-39.	6.6	63
68	An inhalation anesthetic device for stereotaxic operation on mouse pups. Journal of Neuroscience Methods, 2015, 243, 63-67.	1.3	3
69	Millimeterâ€5ized Neural Building Blocks for 3D Heterogeneous Neural Network Assembly. Advanced Healthcare Materials, 2013, 2, 1564-1570.	3.9	76
70	Three-dimensional neuron–muscle constructs with neuromuscular junctions. Biomaterials, 2013, 34, 9413-9419.	5.7	162
71	Muscle based bioactuator driven in air. , 2013, , .		1

72 Multi-layered placental barrier structure integrated with microfluidic channels. , 2013, , .

1

ΥυγΑ Μογιμοτο

#	Article	IF	CITATIONS
73	Microfluidically tunable lenticular lens. , 2013, , .		3
74	Three-dimensional cell culture based on microfluidic techniques to mimic living tissues. Biomaterials Science, 2013, 1, 257-264.	2.6	47
75	Construction of 3D, Layered Skin, Microsized Tissues by Using Cell Beads for Cellular Function Analysis. Advanced Healthcare Materials, 2013, 2, 261-265.	3.9	34
76	Muscle fibers actuated by neural signals. , 2012, , .		1
77	Molding Cell Beads for Rapid Construction of Macroscopic 3D Tissue Architecture. Advanced Materials, 2011, 23, H90-4.	11.1	275
78	A hybrid axisymmetric flow-focusing device for monodisperse picoliter droplets. Journal of Micromechanics and Microengineering, 2011, 21, 054031.	1.5	20
79	Monodisperse Cell-Encapsulating Peptide Microgel Beads for 3D Cell Culture. Langmuir, 2010, 26, 2645-2649.	1.6	92
80	Three-dimensional axisymmetric flow-focusing device using stereolithography. Biomedical Microdevices, 2009, 11, 369-377.	1.4	83
81	Reconstruction of 3D Hierarchic Micro-Tissues using Monodisperse Collagen Microbeads. , 2009, , .		2
82	Monodisperse semi-permeable microcapsules for continuous observation of cells. Lab on A Chip, 2009, 9, 2217.	3.1	73
83	"Housing" for cells in monodisperse microcages. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	1