

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9451720/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Fluorescence paper-based sensor for visual detection of carbamate pesticides in food based on CdTe<br>quantum dot and nano ZnTPyP. Food Chemistry, 2020, 327, 127075.                                                                                                                     | 8.2 | 85        |
| 2  | One-class partial least squares (OCPLS) classifier. Chemometrics and Intelligent Laboratory Systems, 2013, 126, 1-5.                                                                                                                                                                      | 3.5 | 76        |
| 3  | A MATLAB toolbox for class modeling using one-class partial least squares (OCPLS) classifiers.<br>Chemometrics and Intelligent Laboratory Systems, 2014, 139, 58-63.                                                                                                                      | 3.5 | 48        |
| 4  | MCCV stacked regression for model combination and fast spectral interval selection in multivariate calibration. Chemometrics and Intelligent Laboratory Systems, 2007, 87, 226-230.                                                                                                       | 3.5 | 43        |
| 5  | Rapid and nondestructive detection of multiple adulterants in kudzu starch by near infrared (NIR)<br>spectroscopy and chemometrics. LWT - Food Science and Technology, 2015, 61, 590-595.                                                                                                 | 5.2 | 39        |
| 6  | Rapid analysis of adulterations in Chinese lotus root powder (LRP) by near-infrared (NIR) spectroscopy coupled with chemometric class modeling techniques. Food Chemistry, 2013, 141, 2434-2439.                                                                                          | 8.2 | 37        |
| 7  | Multivariate quality control solved by oneâ€class partial least squares regression: identification of<br>adulterated peanut oils by midâ€infrared spectroscopy. Journal of Chemometrics, 2011, 25, 568-574.                                                                               | 1.3 | 36        |
| 8  | FTIR Spectroscopy and Chemometric Class Modeling Techniques for Authentication of Chinese Sesame Oil. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1003-1009.                                                                                                          | 1.9 | 34        |
| 9  | Rapid Discrimination of the Geographical Origins of an Oolong Tea (Anxi-Tieguanyin) by Near-Infrared<br>Spectroscopy and Partial Least Squares Discriminant Analysis. Journal of Analytical Methods in<br>Chemistry, 2014, 2014, 1-6.                                                     | 1.6 | 29        |
| 10 | A comprehensive quality evaluation method by FT-NIR spectroscopy and chemometric: Fine<br>classification and untargeted authentication against multiple frauds for Chinese Ganoderma lucidum.<br>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 182, 17-25. | 3.9 | 29        |
| 11 | "Turn-off―fluorescent sensor based on double quantum dots coupled with chemometrics for highly<br>sensitive and specific recognition of 53 famous green teas. Analytica Chimica Acta, 2018, 1008, 103-110.                                                                                | 5.4 | 29        |
| 12 | Detection of unexpected frauds: Screening and quantification of maleic acid in cassava starch by Fourier transform near-infrared spectroscopy. Food Chemistry, 2017, 227, 322-328.                                                                                                        | 8.2 | 28        |
| 13 | Untargeted Detection of Illegal Adulterations in Chinese Glutinous Rice Flour (GRF) by NIR<br>Spectroscopy and Chemometrics: Specificity of Detection Improved by Reducing Unnecessary<br>Variations. Food Analytical Methods, 2013, 6, 1568-1575.                                        | 2.6 | 25        |
| 14 | Predicting the Age and Type of Tuocha Tea by Fourier Transform Infrared Spectroscopy and<br>Chemometric Data Analysis. Journal of Agricultural and Food Chemistry, 2011, 59, 10461-10469.                                                                                                 | 5.2 | 23        |
| 15 | Combining local wavelength information and ensemble learning to enhance the specificity of class modeling techniques: Identification of food geographical origins and adulteration. Analytica Chimica Acta, 2012, 754, 31-38.                                                             | 5.4 | 23        |
| 16 | Untargeted detection and quantitative analysis of poplar balata (PB) in Chinese propolis by FT-NIR spectroscopy and chemometrics. Food Chemistry, 2013, 141, 4132-4137.                                                                                                                   | 8.2 | 21        |
| 17 | The Feasibility of Using Near-Infrared Spectroscopy and Chemometrics for Untargeted Detection of Protein Adulteration in Yogurt: Removing Unwanted Variations in Pure Yogurt. Journal of Analytical Methods in Chemistry, 2013, 2013, 1-9.                                                | 1.6 | 21        |
| 18 | Fusion of nearâ€infrared and fluorescence spectroscopy for untargeted fraud detection ofÂChinese tea<br>seed oil using chemometric methods. Journal of the Science of Food and Agriculture, 2019, 99,<br>2285-2291.                                                                       | 3.5 | 19        |

| #  | Article                                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fine classification and untargeted detection of multiple adulterants of Gastrodia elata BI. (GE) by near-infrared spectroscopy coupled with chemometrics. Analytical Methods, 2017, 9, 1897-1904.                                                                                                           | 2.7 | 18        |
| 20 | Construction of an Efficacious Model for a Nondestructive Identification of Traditional Chinese<br>Medicines Liuwei Dihuang Pills from Different Manufacturers Using Near-infrared Spectroscopy and<br>Moving Window Partial Least-squares Discriminant Analysis. Analytical Sciences, 2009, 25, 1143-1148. | 1.6 | 17        |
| 21 | Challenges of large-class-number classification (LCNC): A novel ensemble strategy (ES) and its<br>application to discriminating the geographical origins of 25 green teas. Chemometrics and Intelligent<br>Laboratory Systems, 2016, 157, 43-49.                                                            | 3.5 | 17        |
| 22 | Using near-infrared process analysis to study gas–solid adsorption process as well as its data<br>treatment based on artificial neural network and partial least squares. Vibrational Spectroscopy,<br>2011, 56, 202-209.                                                                                   | 2.2 | 16        |
| 23 | Combining bootstrap and uninformative variable elimination: Chemometric identification of metabonomic biomarkers by nonparametric analysis of discriminant partial least squares. Chemometrics and Intelligent Laboratory Systems, 2012, 115, 37-43.                                                        | 3.5 | 16        |
| 24 | Simultaneous detection of multiple inherited metabolic diseases using GC-MS urinary metabolomics by chemometrics multi-class classification strategies. Talanta, 2018, 186, 489-496.                                                                                                                        | 5.5 | 16        |
| 25 | Moving Window Partial Least-Squares Discriminant Analysis for Identification of Different Kinds of<br>Bezoar Samples by near Infrared Spectroscopy and Comparison of Different Pattern Recognition<br>Methods. Journal of Near Infrared Spectroscopy, 2007, 15, 291-297.                                    | 1.5 | 15        |
| 26 | Optimized sample-weighted partial least squares. Talanta, 2007, 71, 561-566.                                                                                                                                                                                                                                | 5.5 | 15        |
| 27 | Coupling bootstrap with synergy self-organizing map-based orthogonal partial least squares<br>discriminant analysis: Stable metabolic biomarker selection for inherited metabolic diseases. Talanta,<br>2020, 219, 121370.                                                                                  | 5.5 | 13        |
| 28 | Robust and Automated Internal Quality Grading of a Chinese Green Tea (Longjing) by Near-Infrared Spectroscopy and Chemometrics. Journal of Spectroscopy, 2013, 2013, 1-7.                                                                                                                                   | 1.3 | 12        |
| 29 | Dual-QDs ratios fluorescent probe for sensitive and selective detection of silver ions contamination in real sample. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 234, 118248.                                                                                              | 3.9 | 12        |
| 30 | Visual paper-based sensor for the highly sensitive detection of caffeine in food and biological matrix based on CdTe-nano ZnTPyP combined with chemometrics. Mikrochimica Acta, 2021, 188, 27.                                                                                                              | 5.0 | 12        |
| 31 | Automatic configuration of optimized sample-weighted least-squares support vector machine by particle swarm optimization for multivariate spectral analysis. Analytical Methods, 2010, 2, 282.                                                                                                              | 2.7 | 10        |
| 32 | Rapid Detection of Exogenous Adulterants and Species Discrimination for a <scp>C</scp> hinese<br>Functional Tea (Banlangen) by Fourierâ€Transform Nearâ€Infrared ( <scp>FT</scp> â€ <scp>NIR</scp> )<br>Spectroscopy and Chemometrics. Journal of Food Quality, 2015, 38, 450-457.                          | 2.6 | 10        |
| 33 | Protected Geographical Indication Identification of a Chinese Green Tea (Anji-White) by Near-Infrared<br>Spectroscopy and Chemometric Class Modeling Techniques. Journal of Spectroscopy, 2013, 2013, 1-8.                                                                                                  | 1.3 | 9         |
| 34 | Variety identification and age prediction of Pu-erh tea using graphene oxide and porphyrin complex based mid-infrared spectroscopy coupled with chemometrics. Microchemical Journal, 2020, 158, 105255.                                                                                                     | 4.5 | 9         |
| 35 | Rapid detection of five pesticide residues using complexes of gold nanoparticle and porphyrin combined with ultraviolet visible spectrum. Journal of the Science of Food and Agriculture, 2020, 100, 4464-4473.                                                                                             | 3.5 | 9         |
| 36 | Simultaneous Recognition of Species, Quality Grades, and Multivariate Calibration of Antioxidant<br>Activities for 12 Famous Green Teas Using Mid- and Near-Infrared Spectroscopy Coupled with<br>Chemometrics. Journal of Analytical Methods in Chemistry, 2019, 2019, 1-14.                               | 1.6 | 8         |

| #  | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Combining Electronic Tongue Array and Chemometrics for Discriminating the Specific Geographical<br>Origins of Green Tea. Journal of Analytical Methods in Chemistry, 2013, 2013, 1-5.                                                                                               | 1.6 | 7         |
| 38 | Combining Near-Infrared Spectroscopy and Chemometrics for Rapid Recognition of an Hg-Contaminated Plant. Journal of Spectroscopy, 2016, 2016, 1-7.                                                                                                                                  | 1.3 | 7         |
| 39 | ZnCdSe-CdTe quantum dots: A "turn-off―fluorescent probe for the detection of multiple adulterants<br>in an herbal honey. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 221,<br>117212.                                                               | 3.9 | 7         |
| 40 | Rapid Recognition of Geoherbalism and Authenticity of a Chinese Herb by Data Fusion of Near-Infrared<br>Spectroscopy (NIR) and Mid-Infrared (MIR) Spectroscopy Combined with Chemometrics. Journal of<br>Spectroscopy, 2019, 2019, 1-9.                                             | 1.3 | 7         |
| 41 | Determination of <scp>lâ€</scp> theanine in tea water using fluorescenceâ€visualized paperâ€based sensors<br>based on <scp>CdTe</scp> quantum dots/corn carbon dots and nanoâ€porphyrin with chemometrics.<br>Journal of the Science of Food and Agriculture, 2021, 101, 2552-2560. | 3.5 | 7         |
| 42 | Nonlinear Multivariate Calibration of Shelf Life of Preserved Eggs (Pidan) by Near Infrared<br>Spectroscopy: Stacked Least Squares Support Vector Machine with Ensemble Preprocessing. Journal of<br>Spectroscopy, 2013, 2013, 1-7.                                                 | 1.3 | 6         |
| 43 | Simultaneous detection of multiple frauds in kiwifruit juice by fusion of traditional and<br>double-quantum-dots enhanced fluorescent spectroscopic techniques and chemometrics.<br>Microchemical Journal, 2020, 157, 105105.                                                       | 4.5 | 6         |
| 44 | Parallel calibration revisited: The second direction for shrinkage estimation of regression<br>coefficients can be as natural and necessary as the traditional one. Analytica Chimica Acta, 2009, 644,<br>25-29.                                                                    | 5.4 | 5         |
| 45 | Developing novel and general descriptors for traditional Chinese medicine (TCM) formulas: A case<br>study of quantitative formula–activity relationship (QFAR) model for hypertension prescriptions.<br>Chemometrics and Intelligent Laboratory Systems, 2011, 109, 186-191.        | 3.5 | 5         |
| 46 | Calibrating the Shelf-life of Chinese Flavored Dry Tofu by FTIR Spectroscopy and Chemometrics:<br>Effects of Data Preprocessing and Nonlinear Transformation on Multivariate Calibration Accuracy.<br>Food Analytical Methods, 2012, 5, 1328-1334.                                  | 2.6 | 5         |
| 47 | Studying a gas–solid multi-component adsorption process with near-infrared process analytical<br>technique: Experimental setup, chemometrics, adsorption kinetics and mechanism. Chemometrics and<br>Intelligent Laboratory Systems, 2015, 144, 80-86.                              | 3.5 | 5         |
| 48 | Rapid Quantification of Melamine in Different Brands/Types of Milk Powders Using Standard Addition<br>Net Analyte Signal and Near-Infrared Spectroscopy. Journal of Analytical Methods in Chemistry, 2016,<br>2016, 1-9.                                                            | 1.6 | 5         |
| 49 | Enhanced Specificity for Detection of Frauds by Fusion of Multi-class and One-Class Partial Least<br>Squares Discriminant Analysis: Geographical Origins of Chinese Shiitake Mushroom. Food Analytical<br>Methods, 2016, 9, 451-458.                                                | 2.6 | 5         |
| 50 | Chemometric Analysis of Elemental Fingerprints for GE Authentication of Multiple Geographical<br>Origins. Journal of Analytical Methods in Chemistry, 2019, 2019, 1-7.                                                                                                              | 1.6 | 5         |
| 51 | Fusion of elemental profiles and chemometrics: Discrimination of organic and conventional green teas. Microchemical Journal, 2019, 149, 104006.                                                                                                                                     | 4.5 | 4         |
| 52 | Simultaneous quantitative structureâ€activity relationship analysis of catalyst activity and selectivity<br>in the direct oxidation of C―H bonds. Journal of Chemometrics, 2019, 33, e3165.                                                                                         | 1.3 | 3         |
| 53 | Discriminating the Geographical Origins of Chinese White Lotus Seeds by Near-Infrared Spectroscopy and Chemometrics. Journal of Spectroscopy, 2015, 2015, 1-8.                                                                                                                      | 1.3 | 2         |
| 54 | Quality Degradation of Chinese White Lotus Seeds Caused by Dampening during Processing and<br>Storage: Rapid and Nondestructive Discrimination Using Near-Infrared Spectroscopy. Journal of<br>Analytical Methods in Chemistry, 2015, 2015, 1-7.                                    | 1.6 | 2         |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Interpretable linear and nonlinear quantitative structure-selectivity relationship (QSSR) modeling of<br>a biomimetic catalytic system by particle swarm optimization based sparse regression. Chemometrics<br>and Intelligent Laboratory Systems, 2016, 159, 187-195. | 3.5 | 2         |
| 56 | Beyond one-against-all (OAA) and one-against-one (OAO): An exhaustive and parallel half-against-half<br>(HAH) strategy for multi-class classification and applications to metabolomics. Chemometrics and<br>Intelligent Laboratory Systems, 2020, 204, 104107.         | 3.5 | 2         |
| 57 | Classification of Different Blueberry Cultivars by Analysis of Physical Factors, Chemical and<br>Nutritional Ingredients, and Antioxidant Capacities. Journal of Food Quality, 2020, 2020, 1-9.                                                                        | 2.6 | 1         |
| 58 | To correlate and predict the potential and new functions of traditional Chinese medicine formulas based on similarity indices. Journal of Chemometrics, 2018, 32, e2924.                                                                                               | 1.3 | 0         |
| 59 | A New Plant Indicator ( <i>Artemisia lavandulaefolia</i> DC.) of Mercury in Soil Developed by<br>Fourier-Transform Near-Infrared Spectroscopy Coupled with Least Squares Support Vector Machine.<br>Journal of Analytical Methods in Chemistry, 2019, 2019, 1-6.       | 1.6 | 0         |
| 60 | Hâ€ŧype indices with applications in chemometrics I: hâ€multiple similarity index. Journal of Chemometrics,<br>2021, 35, e3365.                                                                                                                                        | 1.3 | 0         |
| 61 | Hâ€ŧype indices with applications in chemometrics II: hâ€outlyingness index. Journal of Chemometrics, 2021, 35, e3375.                                                                                                                                                 | 1.3 | 0         |