
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/945151/publications.pdf Version: 2024-02-01

POREDTILAST

#	Article	IF	CITATIONS
1	Fruity, sticky, stinky, spicy, bitter, addictive, and deadly: evolutionary signatures of metabolic complexity in the Solanaceae. Natural Product Reports, 2022, 39, 1438-1464.	5.2	12
2	Deep roots and many branches: Origins of plant-specialized metabolic enzymes in general metabolism. Current Opinion in Plant Biology, 2022, 66, 102192.	3.5	8
3	Natural variation meets synthetic biology: Promiscuous trichome-expressed acyltransferases from <i>Nicotiana</i> . Plant Physiology, 2022, 190, 146-164.	2.3	3
4	ldentification of BAHD acyltransferases associated with acylinositol biosynthesis in <scp><i>Solanum quitoense</i></scp> (naranjilla). Plant Direct, 2022, 6, .	0.8	1
5	Switchgrass Metabolomics Reveals Striking Genotypic and Developmental Differences in Specialized Metabolic Phenotypes. Journal of Agricultural and Food Chemistry, 2022, 70, 8010-8023.	2.4	9
6	Migration through a Major Andean Ecogeographic Disruption as a Driver of Genetic and Phenotypic Diversity in a Wild Tomato Species. Molecular Biology and Evolution, 2021, 38, 3202-3219.	3.5	14
7	Degradation of salicylic acid to catechol in Solanaceae by SA 1-hydroxylase. Plant Physiology, 2021, 185, 876-891.	2.3	9
8	It happened again: Convergent evolution of acylglucose specialized metabolism in black nightshade and wild tomato. Science Advances, 2021, 7, eabj8726.	4.7	20
9	Location, location! cellular relocalization primes specialized metabolic diversification. FEBS Journal, 2020, 287, 1359-1368.	2.2	25
10	Within- and cross-species predictions of plant specialized metabolism genes using transfer learning. In Silico Plants, 2020, 2, diaa005.	0.8	10
11	How Plants Synthesize Pyrethrins: Safe and Biodegradable Insecticides. Trends in Plant Science, 2020, 25, 1240-1251.	4.3	44
12	An Integrated Analytical Approach Reveals Trichome Acylsugar Metabolite Diversity in the Wild Tomato Solanum pennellii. Metabolites, 2020, 10, 401.	1.3	12
13	A Trichome-Specific, Plastid-Localized Tanacetum cinerariifolium Nudix Protein Hydrolyzes the Natural Pyrethrin Pesticide Biosynthetic Intermediate trans-Chrysanthemyl Diphosphate. Frontiers in Plant Science, 2020, 11, 482.	1.7	18
14	Quantitative trait loci analysis of seedâ€specialized metabolites reveals seedâ€specific flavonols and differential regulation of glycoalkaloid content in tomato. Plant Journal, 2020, 103, 2007-2024.	2.8	32
15	Specialized Metabolism in a Nonmodel Nightshade: Trichome Acylinositol Biosynthesis. Plant Physiology, 2020, 183, 915-924.	2.3	20
16	Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. ELife, 2020, 9, .	2.8	47
17	A New Light on Photosystem II Maintenance in Oxygenic Photosynthesis. Frontiers in Plant Science, 2019, 10, 975.	1.7	72
18	Robust predictions of specialized metabolism genes through machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2344-2353.	3.3	79

#	Article	IF	CITATIONS
19	Put on Your Sunscreen: The Birth of Arabidopsis Abiotic Stress Genetics. Plant Cell, 2019, 31, 1406-1407.	3.1	1
20	Evolution of metabolic novelty: A trichome-expressed invertase creates specialized metabolic diversity in wild tomato. Science Advances, 2019, 5, eaaw3754.	4.7	54
21	Tip of the trichome: evolution of acylsugar metabolic diversity in Solanaceae. Current Opinion in Plant Biology, 2019, 49, 8-16.	3.5	72
22	Pyrethrin Biosynthesis: The Cytochrome P450 Oxidoreductase CYP82Q3 Converts Jasmolone To Pyrethrolone. Plant Physiology, 2019, 181, 934-944.	2.3	20
23	Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis. ELife, 2019, 8, .	2.8	74
24	Evolution and the single cell: Metabolic diversity in tomato. FASEB Journal, 2019, 33, 343.3.	0.2	0
25	Production of trans-chrysanthemic acid, the monoterpene acid moiety of natural pyrethrin insecticides, in tomato fruit. Metabolic Engineering, 2018, 47, 271-278.	3.6	26
26	Coexpression Analysis Identifies Two Oxidoreductases Involved in the Biosynthesis of the Monoterpene Acid Moiety of Natural Pyrethrin Insecticides in <i>Tanacetum cinerariifolium</i> . Plant Physiology, 2018, 176, 524-537.	2.3	45
27	The Rising of Acylsugar Diversity: Metabolic Innovation in Tomato Trichomes through BAHD Enzyme Promiscuity and Pathway Evolution. FASEB Journal, 2018, 32, 537.2.	0.2	0
28	A Regulatory Hierarchy of the Arabidopsis Branched-Chain Amino Acid Metabolic Network. Plant Cell, 2017, 29, 1480-1499.	3.1	49
29	Promiscuity, impersonation and accommodation: evolution of plant specialized metabolism. Current Opinion in Structural Biology, 2017, 47, 105-112.	2.6	47
30	A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8110-E8117.	3.3	52
31	Evolution of a flipped pathway creates metabolic innovation in tomato trichomes through BAHD enzyme promiscuity. Nature Communications, 2017, 8, 2080.	5.8	46
32	Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. ELife, 2017, 6, .	2.8	84
33	Acylsugar Acylhydrolases: Carboxylesterase-Catalyzed Hydrolysis of Acylsugars in Tomato Trichomes. Plant Physiology, 2016, 170, 1331-1344.	2.3	51
34	Introgression of acylsugar chemistry QTL modifies the composition and structure of acylsugars produced by high-accumulating tomato lines. Molecular Breeding, 2016, 36, 1.	1.0	26
35	In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E239-48.	3.3	106
36	Utility and Limitations of Using Gene Expression Data to Identify Functional Associations. PLoS Computational Biology, 2016, 12, e1005244.	1.5	63

#	Article	IF	CITATIONS
37	Functionally Divergent Alleles and Duplicated Loci Encoding an Acyltransferase Contribute to Acylsugar Metabolite Diversity in <i>Solanum</i> Trichomes. Plant Cell, 2015, 27, 1002-1017.	3.1	106
38	A feedback insensitive isopropylmalate synthase affects acylsugar composition in cultivated and wild tomato. Plant Physiology, 2015, 169, pp.00474.2015.	2.3	73
39	PHOTOSYSTEM II PROTEIN33, a Protein Conserved in the Plastid Lineage, Is Associated with the Chloroplast Thylakoid Membrane and Provides Stability to Photosystem II Supercomplexes in Arabidopsis. Plant Physiology, 2015, 167, 481-492.	2.3	46
40	The Impact of the Branched-Chain Ketoacid Dehydrogenase Complex on Amino Acid Homeostasis in Arabidopsis. Plant Physiology, 2015, 169, pp.00461.2015.	2.3	74
41	A land plantâ€specific thylakoid membrane protein contributes to photosystemÂ <scp>II</scp> maintenance in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2015, 82, 731-743.	2.8	34
42	Something old, something new: Conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiology, 2015, 169, pp.00994.2015.	2.3	143
43	MPH1 is a thylakoid membrane protein involved in protecting photosystem II from photodamage in land plants. Plant Signaling and Behavior, 2015, 10, e1076602.	1.2	14
44	Analysis of Natural and Induced Variation in Tomato Glandular Trichome Flavonoids Identifies a Gene Not Present in the Reference Genome. Plant Cell, 2014, 26, 3272-3285.	3.1	49
45	Analysis of Essential Arabidopsis Nuclear Genes Encoding Plastid-Targeted Proteins. PLoS ONE, 2013, 8, e73291.	1.1	43
46	Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16377-16382.	3.3	149
47	Achieving Diversity in the Face of Constraints: Lessons from Metabolism. Science, 2012, 336, 1663-1667.	6.0	61
48	Striking Natural Diversity in Glandular Trichome Acylsugar Composition Is Shaped by Variation at the Acyltransferase2 Locus in the Wild Tomato <i>Solanum habrochaites</i> Â Â Â. Plant Physiology, 2012, 160, 1854-1870.	2.3	83
49	MIPHENO: data normalization for high throughput metabolite analysis. BMC Bioinformatics, 2012, 13, 10.	1.2	27
50	Rapid LC–MS/MS Profiling of Protein Amino Acids and Metabolically Related Compounds for Large-Scale Assessment of Metabolic Phenotypes. Methods in Molecular Biology, 2012, 828, 1-11.	0.4	12
51	Taming the hydra of specialized metabolism: how systems biology and comparative approaches are revolutionizing plant biochemistry. Current Opinion in Plant Biology, 2012, 15, 338-344.	3.5	55
52	Evolution of TPS20â€related terpene synthases influences chemical diversity in the glandular trichomes of the wild tomato relative Solanum habrochaites. Plant Journal, 2012, 71, 921-935.	2.8	74
53	A Small Zinc Finger Thylakoid Protein Plays a Role in Maintenance of Photosystem II in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2011, 23, 1861-1875.	3.1	143
54	Chloroplast 2010: A Database for Large-Scale Phenotypic Screening of Arabidopsis Mutants Â. Plant Physiology, 2011, 155, 1589-1600.	2.3	62

ROBERT L LAST

#	Article	IF	CITATIONS
55	The Tomato Terpene Synthase Gene Family Â. Plant Physiology, 2011, 157, 770-789.	2.3	282
56	Chloroplast Phenomics: Systematic Phenotypic Screening of Chloroplast Protein Mutants in Arabidopsis. Methods in Molecular Biology, 2011, 775, 161-185.	0.4	10
57	A J-Like Protein Influences Fatty Acid Composition of Chloroplast Lipids in Arabidopsis. PLoS ONE, 2011, 6, e25368.	1.1	24
58	Broad connections in the Arabidopsis seed metabolic network revealed by metabolite profiling of an amino acid catabolism mutant. Plant Journal, 2010, 61, 579-590.	2.8	76
59	Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines. Plant Journal, 2010, 62, 391-403.	2.8	178
60	Shotguns and SNPs: how fast and cheap sequencing is revolutionizing plant biology. Plant Journal, 2010, 61, 922-927.	2.8	42
61	Twenty-First Century Plant Biology: Impacts of the Arabidopsis Genome on Plant Biology and Agriculture. Plant Physiology, 2010, 154, 497-500.	2.3	20
62	Studies of a Biochemical Factory: Tomato Trichome Deep Expressed Sequence Tag Sequencing and Proteomics Â. Plant Physiology, 2010, 153, 1212-1223.	2.3	117
63	Large-Scale Reverse Genetics in Arabidopsis: Case Studies from the Chloroplast 2010 Project Â. Plant Physiology, 2010, 152, 529-540.	2.3	90
64	FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant Journal, 2009, 60, 832-839.	2.8	84
65	Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10865-10870.	3.3	331
66	Reduced activity of <i>Arabidopsis thaliana</i> HMT2, a methionine biosynthetic enzyme, increases seed methionine content. Plant Journal, 2008, 54, 310-320.	2.8	53
67	Harnessing plant trichome biochemistry for the production of useful compounds. Plant Journal, 2008, 54, 702-711.	2.8	320
68	New Connections across Pathways and Cellular Processes: Industrialized Mutant Screening Reveals Novel Associations between Diverse Phenotypes in Arabidopsis Â. Plant Physiology, 2008, 146, 1482-1500.	2.3	79
69	Genome-Enabled Approaches Shed New Light on Plant Metabolism. Science, 2008, 320, 479-481.	6.0	25
70	Web-Based Arabidopsis Functional and Structural Genomics Resources. The Arabidopsis Book, 2008, 6, e0118.	0.5	11
71	LCâ °MS/MS Assay for Protein Amino Acids and Metabolically Related Compounds for Large-Scale Screening of Metabolic Phenotypes. Analytical Chemistry, 2007, 79, 8067-8075.	3.2	86
72	Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant Journal, 2007, 49, 786-799.	2.8	142

ROBERT L LAST

#	Article	IF	CITATIONS
73	Towards the plant metabolome and beyond. Nature Reviews Molecular Cell Biology, 2007, 8, 167-174.	16.1	110
74	Characterization of seedâ€specific benzoyloxyglucosinolate mutations in <i>Arabidopsis thaliana</i> . Plant Journal, 2007, 51, 1062-1076.	2.8	90
75	Minimum reporting standards for plant biology context information in metabolomic studies. Metabolomics, 2007, 3, 195-201.	1.4	116
76	Progress in the dissection and manipulation of plant vitamin E biosynthesis. Physiologia Plantarum, 2006, 126, 356-368.	2.6	51
77	ups1, an Arabidopsis thaliana camalexin accumulation mutant defective in multiple defence signalling pathways. Plant Journal, 2005, 41, 673-684.	2.8	34
78	The Arabidopsis vitamin E pathway gene5-1 Mutant Reveals a Critical Role for Phytol Kinase in Seed Tocopherol Biosynthesis. Plant Cell, 2005, 18, 212-224.	3.1	179
79	Weed Power, Translating Arabidopsis. Plant Physiology, 2004, 135, 601-601.	2.3	0
80	Application of a high-throughput HPLC-MS/MS assay toArabidopsismutant screening; evidence that threonine aldolase plays a role in seed nutritional quality. Plant Journal, 2004, 39, 465-475.	2.8	118
81	Characterization of the Arabidopsis TU8 Glucosinolate Mutation,an Allele of TERMINAL FLOWER2. Plant Molecular Biology, 2004, 54, 671-682.	2.0	51
82	Engineering Vitamin E Content: From Arabidopsis Mutant to Soy Oil. Plant Cell, 2003, 15, 3007-3019.	3.1	231
83	Predictive Metabolic Engineering: A Goal for Systems Biology. Plant Physiology, 2003, 132, 420-425.	2.3	141
84	Ethylmethanesulfonate Saturation Mutagenesis in Arabidopsis to Determine Frequency of Herbicide Resistance. Plant Physiology, 2003, 131, 139-146.	2.3	145
85	Sandbox Ethics in Science: Sharing of Data and Materials in Plant Biology. Plant Physiology, 2003, 132, 17-18.	2.3	1
86	Arabidopsis UVR8 Regulates Ultraviolet-B Signal Transduction and Tolerance and Contains Sequence Similarity to Human Regulator of Chromatin Condensation 1. Plant Physiology, 2002, 130, 234-243.	2.3	328
87	Arabidopsis Map-Based Cloning in the Post-Genome Era. Plant Physiology, 2002, 129, 440-450.	2.3	603
88	Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2262-2267.	3.3	262
89	Identification of Ascorbic Acid-Deficient Arabidopsis thaliana Mutants. Genetics, 2000, 154, 847-856.	1.2	273
90	Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4198-4203.	3.3	367

#	Article	IF	CITATIONS
91	LSD1 Regulates Salicylic Acid Induction of Copper Zinc Superoxide Dismutase in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 1999, 12, 1022-1026.	1.4	163
92	Diverse Regulatory Mechanisms of Amino acid Biosynthesis in Plants. , 1999, 21, 173-189.		11
93	UV-B-induced photomorphogenesis inArabidopsis thaliana. Plant Journal, 1998, 15, 667-674.	2.8	134
94	Superoxide Dismutase in Arabidopsis: An Eclectic Enzyme Family with Disparate Regulation and Protein Localization. Plant Physiology, 1998, 118, 637-650.	2.3	558
95	Induction of Arabidopsis Tryptophan Pathway Enzymes and Camalexin by Amino Acid Starvation, Oxidative Stress, and an Abiotic Elicitor. Plant Cell, 1998, 10, 359-370.	3.1	175
96	Induction of Arabidopsis Tryptophan Pathway Enzymes and Camalexin by Amino Acid Starvation, Oxidative Stress, and an Abiotic Elicitor. Plant Cell, 1998, 10, 359.	3.1	21
97	Genetic Approaches to Understanding the Regulation of Tryptophan Biosynthesis. , 1998, , 159-170.		0
98	An Enzyme Similar to Animal Type II Photolyases Mediates Photoreactivation in Arabidopsis. Plant Cell, 1997, 9, 199.	3.1	20
99	An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 328-332.	3.3	178
100	Introns act post-transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant Journal, 1997, 11, 455-464.	2.8	128
101	An Allelic Series of Blue Fluorescent trp1 Mutants of Arabidopsis thaliana. Genetics, 1997, 145, 197-205.	1.2	21
102	Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9970-9974.	3.3	478
103	Characterization of tryptophan synthase alpha subunit mutants of. Molecular Genetics and Genomics, 1996, 253, 353.	2.4	3
104	Arabidopsis thaliana tryptophan synthase alpha: Gene cloning, expression, and subunit interaction. Molecular Genetics and Genomics, 1995, 248, 657-667.	2.4	48
105	Immunological Characterization and Chloroplast Localization of the Tryptophan Biosynthetic Enzymes of the Flowering Plant Arabidopsis thaliana. Journal of Biological Chemistry, 1995, 270, 6081-6087.	1.6	64
106	Arabidopsis Phosphoribosylanthranilate Isomerase: Molecular Genetic Analysis of Triplicate Tryptophan Pathway Genes. Plant Cell, 1995, 7, 447.	3.1	13
107	Evidence that tryptophan is not a direct biosynthetic intermediate of camalexin in Arabidopsis thaliana. Physiological and Molecular Plant Pathology, 1993, 43, 221-229.	1.3	56
108	The Genetics of Nitrogen Assimilation and Amino Acid Biosynthesis in Flowering Plants: Progress and Prospects. International Review of Cytology, 1993, 143, 297-330.	6.2	13

#	Article	IF	CITATIONS
109	Suppressors of trp1 Fluorescence Identify a New Arabidopsis Gene, TRP4, Encoding the Anthranilate Synthase b Subunit. Plant Cell, 1993, 5, 1011.	3.1	49
110	Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. Plant Cell, 1993, 5, 171.	3.1	300
111	A Phosphoribosylanthranilate Transferase Gene Is Defective in Blue Fluorescent <i>Arabidopsis thaliana</i> Tryptophan Mutants. Plant Physiology, 1992, 100, 582-592.	2.3	84
112	Tryptophan Mutants in Arabidopsis: The Consequences of Duplicated Tryptophan Synthase b Genes. Plant Cell, 1991, 3, 345.	3.1	67
113	Tryptophan-Requiring Mutants of the Plant Arabidopsis thaliana. Science, 1988, 240, 305-310.	6.0	190
114	Evidence for Related Functions of the <i>RNA</i> Genes of <i>Saccharomyces cerevisiae</i> . Genetics, 1987, 117, 619-631.	1.2	59