
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9451390/publications.pdf Version: 2024-02-01

FENC OIL

#	Article	IF	CITATIONS
1	Interface formation and bonding control in high-volume-fraction (TiC+TiB2)/Al composites and their roles in enhancing properties. Composites Part B: Engineering, 2021, 209, 108605.	5.9	130
2	Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Composites Part B: Engineering, 2021, 217, 108912.	5.9	117
3	The nano-sized TiC particle reinforced Al–Cu matrix composite with superior tensile ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 622, 189-193.	2.6	89
4	Manufacture of Nano-Sized Particle-Reinforced Metal Matrix Composites: A Review. Acta Metallurgica Sinica (English Letters), 2014, 27, 798-805.	1.5	82
5	Drying Mediated Pattern Formation in a Capillary-Held Organometallic Polymer Solution. Chemistry of Materials, 2005, 17, 6223-6226.	3.2	72
6	High strength and good ductility at elevated temperature of nano-SiCp/Al2014 composites fabricated by semi-solid stir casting combined with hot extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 338-341.	2.6	71
7	Comparative study of the compression properties of TiAl matrix composites reinforced with nano-TiB2 and nano-Ti5Si3 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 596-600.	2.6	68
8	Processing, multiscale microstructure refinement and mechanical property enhancement of hypoeutectic Al–Si alloys via in situ bimodal-sized TiB2 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139081.	2.6	66
9	Design of TiC nanoparticles and their morphology manipulating mechanisms by stoichiometric ratios: Experiment and first-principle calculation. Materials and Design, 2019, 181, 107951.	3.3	64
10	Fabrication, microstructure refinement and strengthening mechanisms of nanosized SiCP/Al composites assisted ultrasonic vibration. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 310-317.	2.6	60
11	Superior creep resistance of 0.3 wt% nano-sized TiCp/Al-Cu composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 42-48.	2.6	59
12	Effects of Fe, Co and Ni elements on the ductility of TiAl alloy. Journal of Alloys and Compounds, 2014, 617, 302-305.	2.8	56
13	Simultaneously increasing the high-temperature tensile strength and ductility of nano-sized TiCp reinforced Al-Cu matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 717, 105-112.	2.6	55
14	The Synthesis, Structure, Morphology Characterizations and Evolution Mechanisms of Nanosized Titanium Carbides and Their Further Applications. Nanomaterials, 2019, 9, 1152.	1.9	54
15	Tribological behavior of shot peened/austempered AISI 5160 steel. Tribology International, 2020, 145, 106197.	3.0	54
16	Simultaneously increasing the strength and ductility of nano-sized TiN particle reinforced Al–Cu matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 596, 98-102.	2.6	53
17	Reinforcement in Al Matrix Composites: A Review of Strengthening Behavior of Nanoâ€Sized Particles. Advanced Engineering Materials, 2018, 20, 1701089.	1.6	53
18	Microstructures and mechanical properties of the Al2014 composites reinforced with bimodal sized SiC particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 637, 70-74.	2.6	52

#	Article	IF	CITATIONS
19	Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation. Scientific Reports, 2015, 5, 10213.	1.6	50
20	Microstructures and tensile properties of nano-sized SiC p /Al-Cu composites fabricated by semisolid stirring assisted with hot extrusion. Materials Characterization, 2017, 131, 195-200.	1.9	49
21	Phase transitions and compression properties of Ti2AlC/TiAl composites fabricated by combustion synthesis reaction. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 539, 344-348.	2.6	48
22	Simultaneously increasing the elevated-temperature tensile strength and plasticity of in situ nano-sized TiCx/Al-Cu-Mg composites. Materials Characterization, 2017, 125, 7-12.	1.9	48
23	High creep resistance behavior of the casting Al–Cu alloy modified by La. Scripta Materialia, 2009, 61, 1153-1155.	2.6	46
24	Superior tensile properties of in situ nano-sized TiCp/Al-Cu composites fabricated by reaction in melt method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 658, 409-414.	2.6	46
25	Enhanced strength and ductility at room and elevated temperatures of Al-Cu alloy matrix composites reinforced with bimodal-sized TiCp compared with monomodal–sized TiCp. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 368-375.	2.6	45
26	Effects of nanosized TiCp on the microstructure evolution and tensile properties of an Al-Mg-Si alloy during cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 98-105.	2.6	45
27	Role of trace nanoparticles in establishing fully optimized microstructure configuration of cold-rolled Al alloy. Materials and Design, 2021, 206, 109743.	3.3	45
28	Superior high creep resistance of in situ nano-sized TiCx/Al-Cu-Mg composite. Scientific Reports, 2017, 7, 4540.	1.6	43
29	Role of nano-sized materials as lubricant additives in friction and wear reduction: A review. Wear, 2022, 490-491, 204206.	1.5	43
30	Effects of nanosized TiC and TiB2 particles on the corrosion behavior of Al-Mg-Si alloy. Corrosion Science, 2020, 167, 108479.	3.0	42
31	Simultaneously enhanced strength and toughness of cast medium carbon steels matrix composites by trace nano-sized TiC particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141485.	2.6	42
32	Unprecedented enhancement in strength-plasticity synergy of (TiC+Al6MoTi+Mo)/Al cermet by multiple length-scale microstructure stimulated synergistic deformation. Composites Part B: Engineering, 2021, 225, 109265.	5.9	41
33	Effects of La addition on the elevated temperature properties of the casting Al–Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1463-1466.	2.6	40
34	The superior elevated-temperature mechanical properties of Al-Cu-Mg-Si composites reinforced with in situ hybrid-sized TiCx-TiB2 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 728, 157-164.	2.6	40
35	Microstructure manipulation and strengthening mechanisms of 40Cr steel via trace TiC nanoparticles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141693.	2.6	40
36	Effect of stoichiometry on the surface energies of {100} and {111} and the crystal shape of TiCx and TiNx. CrystEngComm, 2013, 15, 643-649.	1.3	39

#	Article	IF	CITATIONS
37	A review: phase transformation and wear mechanisms of single-step and dual-step austempered ductile irons. Journal of Materials Research and Technology, 2020, 9, 1054-1069.	2.6	39
38	Microstructural configuration and compressive deformation behavior of a TiAl composite reinforced by Mn and in situ Ti2AlC particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141772.	2.6	39
39	Investigation of the influences of ternary Mg addition on the solidification microstructure and mechanical properties of as-cast Al–10Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 798, 140247.	2.6	38
40	Compression properties and abrasive wear behavior of high volume fraction TiCx–TiB2/Cu composites fabricated by combustion synthesis and hot press consolidation. Materials & Design, 2012, 40, 157-162.	5.1	37
41	A new approach for improving the elevated-temperature strength and ductility of Al–Cu–Mg–Si alloys with minor amounts of dual-phased submicron/nanosized TiB2–TiC particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138266.	2.6	36
42	Microstructure, wear behavior and surface hardening of austempered ductile iron. Journal of Materials Research and Technology, 2020, 9, 9838-9855.	2.6	36
43	Synergistic optimization in solidification microstructure and mechanical performance of novel (TiC N) Tj ETQq1 Manufacturing, 2022, 155, 106843.	1 0.78431 3.8	14 rgBT /Over 36
44	Compression properties and work-hardening behavior of Ti2AlC/TiAl composites fabricated by combustion synthesis and hot press consolidation in the Ti–Al–Nb–C system. Materials & Design, 2011, 32, 5061-5065.	5.1	34
45	Effects of nano-TiCp on the microstructures and tensile properties of TiCp/Al–Cu composites. Materials Characterization, 2014, 94, 80-85.	1.9	34
46	Effects of reinforcement surface modification on the microstructures and tensile properties of SiCp/Al2014 composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 624, 102-109.	2.6	34
47	Microstructure refinement and strengthening mechanisms of bimodal-sized and dual-phased (TiCn-Al3Tim)/Al hybrid composites assisted ultrasonic vibration. Journal of Alloys and Compounds, 2019, 788, 1309-1321.	2.8	34
48	Study of effect of Mn addition on the mechanical properties of Ti2AlC/TiAl composites through first principles study and experimental investigation. Intermetallics, 2012, 28, 65-70.	1.8	32
49	Multiscale design of α-Al, eutectic silicon and Mg2Si phases in Al-Si-Mg alloy manipulated by in situ nanosized crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140627.	2.6	32
50	Fabrication of TiCx-TiB2/Al Composites for Application as a Heat Sink. Materials, 2016, 9, 642.	1.3	31
51	Improved creep resistance of Al-Cu alloy matrix composite reinforced with bimodal-sized TiCp. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 713, 190-194.	2.6	30
52	Effects of alloy elements (Mg, Zn, Sn) on the microstructures and compression properties of high-volume-fraction TiCx/Al composites. Scripta Materialia, 2010, 63, 1209-1211.	2.6	29
53	Microstructure and tensile properties of in situ synthesized nano-sized TiCx/2009Al composites. Materials & Design, 2015, 79, 68-72.	5.1	29
54	Insight into solidification microstructure control by trace TiCN–TiB2 particles for yielding fine-tuned nanoprecipitates in a hypoeutectic Al–Si–Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 142093.	2.6	29

#	Article	IF	CITATIONS
55	Dry sliding friction and wear characterization of in situ TiC/Al-Cu3.7-Mg1.3 nanocomposites with nacre-like structures. Journal of Materials Research and Technology, 2020, 9, 641-653.	2.6	28
56	Effects of quench-tempering and laser hardening treatment on wear resistance of gray cast iron. Journal of Materials Research and Technology, 2020, 9, 8163-8171.	2.6	28
57	Microstructure evolution and mechanical property enhancement of high-Cr hot work die steel manipulated by trace amounts of nano-sized TiC. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141788.	2.6	28
58	Effects of La on the age hardening behavior and precipitation kinetics in the cast Al–Cu alloy. Journal of Alloys and Compounds, 2012, 540, 154-158.	2.8	26
59	Microstructures and Tensile Properties of Al–Cu Matrix Composites Reinforced with Nano-Sized SiCp Fabricated by Semisolid Stirring Process. Metals, 2017, 7, 49.	1.0	26
60	Effects of nanosized TiCp dispersion on the high-temperature tensile strength and ductility of in situ TiCp/Al-Cu-Mg-Si nanocomposites. Journal of Alloys and Compounds, 2019, 774, 425-433.	2.8	26
61	High volume fraction TiCx/Al composites with good comprehensive performance fabricated by combustion synthesis and hot press consolidation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1931-1936.	2.6	25
62	Design of a new Al-Cu alloy manipulated by in-situ nanocrystals with superior high temperature tensile properties and its constitutive equation. Materials and Design, 2019, 181, 107945.	3.3	25
63	Microstructure manipulation and strengthening mechanism of TiAl composites reinforced by Cr solid solution and in-situ nanometer-sized TiB2 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 845, 143214.	2.6	24
64	Strong work-hardening effect in a multiphase ZrCuAlNiO alloy. Applied Physics Letters, 2008, 92, .	1.5	23
65	Effects of Ti-coating layer on the distribution of SiCP in the SiCP/2014Al composites. Materials and Design, 2015, 87, 1100-1106.	3.3	23
66	Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 395-403.	1.5	23
67	Application of nanoparticles in cast steel: An overview. China Foundry, 2020, 17, 111-126.	0.5	23
68	Preparation and characterization of the Al-Cu-Mg-Si-Mn composites reinforced by different surface modified SiCp. Materials Characterization, 2018, 141, 156-162.	1.9	22
69	Mechanical properties and abrasive wear behaviors of in situ nano-TiC x /Al–Zn–Mg–Cu composites fabricated by combustion synthesis and hot press consolidation. Archives of Civil and Mechanical Engineering, 2018, 18, 179-187.	1.9	22
70	Photoluminescence of copper ion exchange BK7 glass planar waveguides. Journal of Materials Science, 2008, 43, 7073-7078.	1.7	21
71	A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites. Materials, 2015, 8, 8839-8849.	1.3	21
72	The interfacial structure and mechanical properties of Ti5Si3-coated SiCP/Al2014 composites fabricated by powder metallurgy with hot pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 661, 217-221.	2.6	21

#	Article	IF	CITATIONS
73	The Dry Sliding Wear Properties of Nano-Sized TiCp/Al-Cu Composites at Elevated Temperatures. Materials, 2017, 10, 939.	1.3	21
74	Effect of oxygen content on the microstructure, compression properties and work-hardening behaviors of ZrCuAlNi glassy composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 580, 13-20.	2.6	20
75	Effect of strain rate on the compression behavior of TiAl and TiAl–2Mn alloys fabricated by combustion synthesis and hot press consolidation. Intermetallics, 2013, 43, 24-28.	1.8	20
76	Superior strength and ductility of the Al–Cu alloys inoculated by Zr-based metallic glass at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 357-360.	2.6	20
77	Simultaneously increased strength and ductility via the hierarchically heterogeneous structure of Al-Mg-Si alloys/nanocomposite. Materials Research Letters, 2020, 8, 225-231.	4.1	20
78	Enhanced elevated-temperature mechanical properties of Al-Mn-Mg containing TiC nano-particles by pre-strain and concurrent precipitation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 305-310.	2.6	19
79	Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles. Journal of the American Ceramic Society, 2021, 104, 2820-2835.	1.9	19
80	Comparison of the effects of Mg and Zn on the interface mismatch and compression properties of 50Âvol% TiB2/Al composites. Ceramics International, 2021, 47, 22121-22129.	2.3	19
81	Microstructure manipulation mechanism and mechanical properties improvement of H13 steel via trace nano-(TiCÂ+ÂTiB2) particles. Materials Characterization, 2022, 188, 111924.	1.9	19
82	Study of effect of Zr addition on the microstructures and mechanical properties of (TiCx–TiB2)/Cu composites by combustion synthesis and hot press consolidation in the Cu–Ti–B4C–Zr system. Materials Research Bulletin, 2015, 70, 167-172.	2.7	18
83	Effects of Carbon Source on TiC Particles' Distribution, Tensile, and Abrasive Wear Properties of In Situ TiC/Al-Cu Nanocomposites Prepared in the Al-Ti-C System. Nanomaterials, 2018, 8, 610.	1.9	18
84	Effects of Ni addition on the microstructure and compressive deformation behavior in Zr–Cu–Ni martensitic alloys. Materials & Design, 2012, 34, 143-147.	5.1	17
85	The microstructure and tensile property for Al2014 composites reinforced with Ti5Si3-coated SiCP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 459-463.	2.6	17
86	Efficient microstructure refinement of Al–Si–Mg alloy manipulated by nanocrystals formed by in-situ crystallization in melt. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 751, 90-98.	2.6	17
87	Controlling the sizes of in-situ TiC nanoparticles for high-performance TiC/Al–Cu nanocomposites. Ceramics International, 2021, 47, 28584-28595.	2.3	17
88	Effect of Cr Content on the Compression Properties and Abrasive Wear Behavior of the High-Volume Fraction (TiC–TiB2)/Cu Composites. Acta Metallurgica Sinica (English Letters), 2014, 27, 951-956.	1.5	16
89	Simultaneously Enhanced Strength, Toughness and Ductility of Cast 40Cr Steels Strengthened by Trace Biphase TiCx-TiB2 Nanoparticles. Metals, 2018, 8, 707.	1.0	16
90	Nanoparticulate dispersion, microstructure refinement and strengthening mechanisms in Ni-coated SiCp/Al-Cu nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 762, 138092.	2.6	15

#	Article	IF	CITATIONS
91	Effect of W content on the compression properties and abrasive wear behavior of the (TiB2–TiCxNy)/(Ni+W) composites. Materials & Design, 2013, 45, 286-291.	5.1	14
92	The abrasive wear behavior of Al2014 composites reinforced with Ti5Si3-coated SiCP. Tribology International, 2017, 112, 33-41.	3.0	14
93	Microstructural and performance characterization of in-situ biphasic micro-nano scale (TiB2-TiCx)/Al-Cu-Mg composites with different ceramic and metal ratios designed for compact integration. Journal of Materials Research and Technology, 2020, 9, 3418-3429.	2.6	14
94	Effects of multi-modification of rare earth oxides PrxOy and LaxOy on microstructure and tensile properties of casting Al–Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 558, 602-606.	2.6	13
95	Different strain-rate dependent compressive properties and work-hardening capacities of 50 vol% TiC /Al and TiB2/Al composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 538, 335-339.	2.6	13
96	Strain-induced precipitation kinetics during non-isothermal annealing of Al-Mn alloys. Journal of Alloys and Compounds, 2018, 735, 2275-2280.	2.8	13
97	Microstructures and Compressive Properties of Al Matrix Composites Reinforced with Bimodal Hybrid In-Situ Nano-/Micro-Sized TiC Particles. Materials, 2018, 11, 1284.	1.3	13
98	Effects of TiB2 content and alloy elements (Mg, Mo, V) on the compression properties of high-volume-fraction TiB2/Al composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 28-32.	2.6	12
99	Simultaneously increasing strength and ductility of the Al–Cu alloys inoculated by Zr-based metallic glass. Materials Characterization, 2015, 100, 36-40.	1.9	12
100	Microstructure evolution and mechanical properties of Al–Cu alloys inoculated by FeBSi metallic glass. Materials & Design, 2015, 67, 130-135.	5.1	12
101	Role of trace nanoparticles in manipulating the widmanstatten structure of low carbon steel. Materials Letters, 2022, 306, 130853.	1.3	12
102	Effect of Al addition on the microstructures and compression properties of (TiCxNy–TiB2)/Ni composites fabricated by combustion synthesis and hot press. Powder Technology, 2015, 286, 716-721.	2.1	11
103	Superior Cryogenic Tensile Strength and Ductility of In Situ Al–Cu Matrix Composite Reinforced with 0.3 wt% Nano‣ized TiCp. Advanced Engineering Materials, 2018, 20, 1701137.	1.6	11
104	In situ nanocrystals manipulate solidification behavior and microstructures of hypereutectic Al-Si alloys by Zr-based amorphous alloys. Journal of Materials Research and Technology, 2020, 9, 4644-4654.	2.6	11
105	Synergistic effects of the TiC nanoparticles and cold rolling on the microstructure and mechanical properties of Al–Cu strips fabricated by twin-roll casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141110.	2.6	11
106	High-content continuous carbon fibers reinforced PEEK matrix composite with ultra-high mechanical and wear performance at elevated temperature. Composite Structures, 2022, 295, 115837.	3.1	11
107	Temperature Dependence of the Wettability between Glassâ€Forming Alloy Zr ₅₅ Cu ₃₀ Al ₁₀ Ni ₅ and Polycrystalline ZrO ₂ . Journal of the American Ceramic Society, 2011, 94, 2162-2170.	1.9	10
108	Age hardening and creep resistance of cast Al–Cu alloy modified by praseodymium. Materials Characterization, 2013, 86, 185-189.	1.9	10

#	Article	IF	CITATIONS
109	Age Hardening and Mechanical Properties of Cast AlCu Alloy Modified by La and Pr. Advanced Engineering Materials, 2015, 17, 143-147.	1.6	10
110	Bainite kinetic transformation of austempered AISI 6150 steel. Journal of Materials Research and Technology, 2020, 9, 1357-1364.	2.6	10
111	Sliding wear behavior of laser surface hardened austempered ductile iron. Journal of Materials Research and Technology, 2020, 9, 14609-14618.	2.6	10
112	Microstructure and Tensile Properties of Graphite Ductile Iron Improved by Minor Amount of Dualâ€Phased TiC–TiB ₂ Nanoparticles. Advanced Engineering Materials, 2021, 23, 2100246.	1.6	10
113	Microstructure and Mechanical Properties of the Dactylopodites of the Chinese Mitten Crab (Eriocheir sinensis). Applied Sciences (Switzerland), 2018, 8, 674.	1.3	9
114	Effects of Cr and Zr Addition on Microstructures, Compressive Properties, and Abrasive Wear Behaviors of In Situ TiB2/Cu Cermets. Materials, 2018, 11, 1464.	1.3	9
115	Effects of alloy elements (Mg, Zn) on the microstructure and mechanical properties of (TiC+TiB2)/Al composites. Ceramics International, 2022, 48, 22096-22105.	2.3	9
116	Grain refinement behavior of Al–Cu alloys inoculated by various metallic glasses. Materials Chemistry and Physics, 2015, 168, 1-5.	2.0	8
117	Effect of Preheating Temperature on the Microstructure and Tensile Properties of 6061 Aluminum Alloy Processed by Hot Rolling-Quenching. Metals, 2019, 9, 182.	1.0	8
118	Warping of triple line in the wetting of B ₄ C by a Cuâ€1 at.% Cr alloy. Surface and Interface Analysis, 2011, 43, 1360-1364.	0.8	7
119	Effect of Ceramic Content on the Compression Properties of TiB2-Ti2AlC/TiAl Composites. Metals, 2015, 5, 2200-2209.	1.0	7
120	Interfacial reaction behavior and evolution mechanism at a preoxidized SiCox/Al interface. Journal of Materials Research and Technology, 2021, 15, 1100-1114.	2.6	7
121	Microstructures, compressive residual stress, friction behavior, and wear mechanism of quenched and tempered shot peened medium carbon steel. Wear, 2022, 488-489, 204131.	1.5	7
122	Effect of Cu and Zn elements on morphology of ceramic particles and interfacial bonding in TiB2/Al composites. Ceramics International, 2022, 48, 25894-25904.	2.3	7
123	Effect of Ni content on the compression properties and abrasive wear behavior of the (TiB2–TiCxNy)/Ni composites. International Journal of Refractory Metals and Hard Materials, 2012, 34, 8-12.	1.7	6
124	Effects of Cr and Mo elements on the microstructures and compressive properties of the in situ (TiCxNy–TiB2)/Ni cermets. Progress in Natural Science: Materials International, 2019, 29, 20-27.	1.8	6
125	Tribological behavior of heat treated AISI 6150 steel. Journal of Materials Research and Technology, 2020, 9, 12293-12307.	2.6	6
126	Simultaneously enhanced hardness and toughness of normalized graphite ductile irons by TiC-TiB2 nanoparticles. Materials Letters, 2021, 291, 129597.	1.3	6

#	Article	IF	CITATIONS
127	Effects of RExOy addition on corrosion behavior of the Al–Cu alloys in 3.5wt.% NaCl solution and pH=4 acid solution. Applied Surface Science, 2014, 307, 153-157.	3.1	5
128	Excellent compressive strength and ductility of Ti 5 Si 3 –coated SiC P /Al2014 composites. Journal of Alloys and Compounds, 2017, 698, 1086-1093.	2.8	5
129	Improving Elevated-Temperature Strength of an Al–Mn–Si Alloy by Strain-Induced Precipitation. Metals, 2018, 8, 446.	1.0	5
130	Microstructure Refinement and Strengthening–Toughening Mechanisms of Gray Cast Irons Reinforced by In Situ Nanosized TiB ₂ –TiC/Al Master Alloy. Advanced Engineering Materials, 2022, 24, 2100731.	1.6	5
131	Synergistic optimization in microstructure and mechanical properties of low carbon steel via trace amount of nano-sized TiC-TiB2. Materials Characterization, 2022, 190, 112060.	1.9	5
132	Tensile properties and work-hardening behaviours of Al–Cu alloys modified by Al84Ni10La6metallic glass. International Journal of Cast Metals Research, 2015, 28, 352-355.	0.5	4
133	A New Approach to Refine Grains in Al Alloys. Advanced Engineering Materials, 2015, 17, 796-801.	1.6	4
134	Comparison of in situ nanocrystals, Sr and nanocrystals + Sr manipulating microstructures and mechanical properties of eutectic Al–Si13.0–Cu5.0–(Ni2.0)–Mg0.6 alloy. Journal of Materials Research and Technology, 2020, 9, 7486-7498.	2.6	4
135	Bainite kinetic energy, activation energy, and tribological behavior of austempered AISI4340 steel. Journal of Materials Research and Technology, 2021, 14, 1473-1481.	2.6	4
136	Enhancing the strength-ductility synergy of Fe-based composites by changing interface bonding between matrix and TiCx with various stoichiometric ratios. Ceramics International, 2022, 48, 31773-31782.	2.3	4
137	Bionic Walking Foot and Mechanical Performance on Soil. Applied Sciences (Switzerland), 2017, 7, 575.	1.3	3
138	Effects of TiB ₂ /TiC <i>_x</i> ratios on compression properties and abrasive wear resistance of in situ 50â€vol% (TiB ₂ –TiC <i>_x</i>)/Al–Cu composites. Powder Metallurgy, 2018, 61, 81-87.	0.9	3
139	Effects of V and Co Element Addition on Microstructures and the Mechanical Properties of In Situ Biphasic Hybrid (TiCxNy–TiB2)/Ni Cermets. Materials, 2018, 11, 1750.	1.3	3
140	Effect mechanism of in situ nano-intermetallic inoculation on the multilevel microstructure and mechanical properties of Al-13Si alloys. Materialia, 2020, 12, 100769.	1.3	3
141	Microstructure refinement and strengthening of Al–Cu alloys manipulated by nanocrystalline phases formed by in situ crystallization of Ni–Nb–Ti metallic glasses in melt. Journal of Materials Research and Technology, 2020, 9, 4494-4505.	2.6	3
142	The Effect of Shot-Peening Time on Tribological Behavior of AISI5160 Steel. Tribology Transactions, 2022, 65, 801-812.	1.1	3
143	The effect of carbon source and molar ratio in Fe–Ti–C system on the microstructure and mechanical properties of in situ TiC/Fe composites. Ceramics International, 2022, 48, 30418-30429.	2.3	3
144	Effect of Mn, Fe and Co on the compression strength and ductility of in situ nano-sized TiB2/TiAl composites. SpringerPlus, 2015, 4, 784.	1.2	2

#	Article	IF	CITATIONS
145	Microstructural Configuration and Impact Toughness of Graphite Ductile Iron Reinforced by Trace Amount of TiC-TiB2 Nanoparticles. Journal of Materials Engineering and Performance, 2022, 31, 4575-4582.	1.2	2
146	Remarkably enhancing mechanical and degradation performance of cast MgZn1.2 alloys via small amount addition of zirconium combined with hot extrusion for orthopedic applications. Journal of Materials Research and Technology, 2022, 19, 1111-1119.	2.6	2
147	Morphology Evolution on the Fracture Surface and Fracture Mechanisms of Multiphase Nanostructured ZrCu-Base Alloys. Materials, 2017, 10, 284.	1.3	1
148	The lamella structure of Al-Mg-Si matrix nanocomposites with isotropically high strength. Materialia, 2020, 13, 100842.	1.3	1
149	Investigation of the Effect of Heat Treatment on the Microstructures and Mechanical Properties of Al-13Si-5Cu-2Ni Alloy. Metals, 2021, 11, 688.	1.0	1
150	Pearlitic structure and wear properties of graphite cast iron reinforced with biphase TiC-TiB2 nanoparticles. Surface Topography: Metrology and Properties, 2020, 8, 045024.	0.9	1