List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9451386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamical behavior of an epidemic model with a nonlinear incidence rate. Journal of Differential Equations, 2003, 188, 135-163.	1.1	481
2	Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments. Journal of Dynamics and Differential Equations, 2008, 20, 699-717.	1.0	466
3	Basic Reproduction Numbers for Reaction-Diffusion Epidemic Models. SIAM Journal on Applied Dynamical Systems, 2012, 11, 1652-1673.	0.7	370
4	Backward bifurcation of an epidemic model with treatment. Mathematical Biosciences, 2006, 201, 58-71.	0.9	282
5	An epidemic model in a patchy environment. Mathematical Biosciences, 2004, 190, 97-112.	0.9	276
6	A predator-prey system with stage-structure for predator. Computers and Mathematics With Applications, 1997, 33, 83-91.	1.4	268
7	Bifurcations in an epidemic model with constant removal rate of the infectives. Journal of Mathematical Analysis and Applications, 2004, 291, 775-793.	0.5	225
8	Simulating the SARS outbreak in Beijing with limited data. Journal of Theoretical Biology, 2004, 227, 369-379.	0.8	156
9	Propagation of HBV with spatial dependence. Mathematical Biosciences, 2007, 210, 78-95.	0.9	153
10	Complex dynamic behavior in a viral model with delayed immune response. Physica D: Nonlinear Phenomena, 2007, 226, 197-208.	1.3	144
11	Dynamics of an HBV model with diffusion and delay. Journal of Theoretical Biology, 2008, 253, 36-44.	0.8	114
12	Permanence and Stability of a Stage-Structured Predator–Prey Model. Journal of Mathematical Analysis and Applications, 2001, 262, 499-528.	0.5	107
13	Threshold of disease transmission in a patch environment. Journal of Mathematical Analysis and Applications, 2003, 285, 321-335.	0.5	104
14	Fisher waves in an epidemic model. Discrete and Continuous Dynamical Systems - Series B, 2004, 4, 1117-1128.	0.5	101
15	The effect of global travel on the spread of SARS. Mathematical Biosciences and Engineering, 2006, 3, 205-218.	1.0	100
16	An Age-Structured Epidemic Model in a Patchy Environment. SIAM Journal on Applied Mathematics, 2005, 65, 1597-1614.	0.8	79
17	Global stability in a viral infection model with lytic and nonlytic immune responses. Computers and Mathematics With Applications, 2006, 51, 1593-1610.	1.4	79
18	Epidemic models with nonlinear infection forces. Mathematical Biosciences and Engineering, 2006, 3, 267-279.	1.0	74

#	Article	IF	CITATIONS
19	Global bifurcation of solutions for a predator–prey model with preyâ€ŧaxis. Mathematical Methods in the Applied Sciences, 2015, 38, 431-443.	1.2	72
20	A discrete epidemic model with stage structureâ [~] †. Chaos, Solitons and Fractals, 2005, 26, 947-958.	2.5	64
21	Minimal wave speed for a class of non-cooperative diffusion–reaction system. Journal of Differential Equations, 2016, 260, 2763-2791.	1.1	60
22	Viral infection model with periodic lytic immune response. Chaos, Solitons and Fractals, 2006, 28, 90-99.	2.5	59
23	Permanence and global attractivity for Lotka-Volterra difference systems. Journal of Mathematical Biology, 1999, 39, 269-282.	0.8	52
24	Hopf bifurcation and bistability of a nutrient–phytoplankton–zooplankton model. Applied Mathematical Modelling, 2012, 36, 6225-6235.	2.2	52
25	Existence of traveling wave solutions for influenza model with treatment. Journal of Mathematical Analysis and Applications, 2014, 419, 469-495.	0.5	50
26	An Epidemic Model with Population Dispersal and Infection Period. SIAM Journal on Applied Mathematics, 2006, 66, 1454-1472.	0.8	42
27	Analysis of mathematical model of prostate cancer with androgen deprivation therapy. Communications in Nonlinear Science and Numerical Simulation, 2019, 66, 41-60.	1.7	32
28	Global stability of a five-dimensional model with immune responses and delay. Discrete and Continuous Dynamical Systems - Series B, 2012, 17, 401-416.	0.5	32
29	An HIV infection model based on a vectored immunoprophylaxis experiment. Journal of Theoretical Biology, 2012, 313, 127-135.	0.8	30
30	Vegetation pattern formation of a water-biomass model. Communications in Nonlinear Science and Numerical Simulation, 2017, 42, 571-584.	1.7	29
31	Adaptation of prey and predators between patches. Journal of Theoretical Biology, 2009, 258, 603-613.	0.8	28
32	Bifurcations of a mathematical model for HIV dynamics. Journal of Mathematical Analysis and Applications, 2016, 434, 837-857.	0.5	27
33	Bifurcation analysis of an epidemic model with nonlinear incidence. Applied Mathematics and Computation, 2009, 214, 411-423.	1.4	25
34	Prey–predator system with parental care for predators. Journal of Theoretical Biology, 2006, 241, 451-458.	0.8	24
35	Mathematical analysis of an HIV model with impulsive antiretroviral drug doses. Mathematics and Computers in Simulation, 2011, 82, 653-665.	2.4	22
36	A discrete model of avian influenza with seasonal reproduction and transmission. Journal of Biological Dynamics, 2010, 4, 296-314.	0.8	18

#	Article	IF	CITATIONS
37	Mathematical analysis for COVID-19 resurgence in the contaminated environment. Mathematical Biosciences and Engineering, 2020, 17, 6909-6927.	1.0	16
38	Mathematical analysis for stochastic model of Alzheimer's disease. Communications in Nonlinear Science and Numerical Simulation, 2020, 89, 105347.	1.7	15
39	Population dispersal and Allee effect. Ricerche Di Matematica, 2016, 65, 535-548.	0.6	12
40	Modeling HIV Dynamics Under Combination Therapy with Inducers and Antibodies. Bulletin of Mathematical Biology, 2019, 81, 2625-2648.	0.9	11
41	Complete classification of global dynamics of a virus model with immune responses. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 1087-1103.	0.5	11
42	Dynamical Adaptation of Parental Care. Bulletin of Mathematical Biology, 2009, 71, 931-951.	0.9	10
43	Global analysis of a mathematical model on malaria with competitive strains and immune responses. Applied Mathematics and Computation, 2015, 259, 132-152.	1.4	10
44	Modeling the role of altruism of antibiotic-resistant bacteria. Journal of Mathematical Biology, 2014, 68, 1317-1339.	0.8	8
45	Invest conflicts of adult predators. Journal of Theoretical Biology, 2008, 253, 12-23.	0.8	7
46	Importance of dispersal adaptations of two competitive populations between patches. Ecological Modelling, 2011, 222, 11-20.	1.2	7
47	Bifurcation Analysis of Mathematical Model of Prostate Cancer with Immunotherapy. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2030018.	0.7	7
48	Modelling drinking with information. Mathematical Methods in the Applied Sciences, 2017, 40, 4400-4411.	1.2	6
49	BIFURCATIONS IN A HOST-PARASITE MODEL WITH NONLINEAR INCIDENCE. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 3291-3307.	0.7	5
50	DYNAMICS OF BACTERIA-PHAGE INTERACTIONS WITH IMMUNE RESPONSE IN A CHEMOSTAT. Journal of Biological Systems, 2017, 25, 697-713.	0.5	4
51	Bifurcation analysis for an in-host Mycobacterium tuberculosis model. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 2299-2322.	0.5	4
52	A bacteriophage model based on CRISPR/Cas immune system in a chemostat. Mathematical Biosciences and Engineering, 2017, 14, 1361-1377.	1.0	4
53	Influences of migrations from local competitive pressures on populations between patches. Journal of Applied Mathematics and Computing, 2011, 37, 313-330.	1.2	3
54	Basic Reproduction Number of Rabies Model with Stage Structure. Acta Applicandae Mathematicae, 2014, 132, 649-661.	0.5	3

#	Article	IF	CITATIONS
55	Traveling wave solutions of Lotka–Volterra type two predatorsâ€one prey model. Mathematical Methods in the Applied Sciences, 2016, 39, 5395-5408.	1.2	2
56	Dynamical analysis of ageâ€structured pertussis model with covert infection. Mathematical Methods in the Applied Sciences, 2020, 43, 1631-1645.	1.2	2
57	Mathematical modelling for scarlet fever with direct and indirect infections. Journal of Biological Dynamics, 2020, 14, 767-787.	0.8	2
58	Codimension-3 Bifurcation in the p53 Regulatory Network Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150104.	0.7	2
59	Dynamics of harmful algae with seasonal temperature variations in the cove-main lake. Discrete and Continuous Dynamical Systems - Series B, 2015, 21, 313-335.	0.5	2
60	Effect of parental care and aggregation on population dynamics. Journal of Theoretical Biology, 2009, 260, 161-171.	0.8	1
61	Modeling eating disorders in young people. Nonlinear Analysis: Real World Applications, 2020, 53, 103064.	0.9	1
62	Epidemic Models with Time Delays. Series in Contemporary Applied Mathematics, 2009, , 289-314.	0.8	0
63	STABILITY OF A PREY-PREDATOR MODEL WITH BEHAVIOR CHANGES. , 2010, , .		0
64	Bifurcation Analysis in Population Genetics Model with Partial Selfing. Abstract and Applied Analysis, 2013, 2013, 1-9.	0.3	0
65	Complex Behaviors of Epidemic Model with Nonlinear Rewiring Rate. Complexity, 2020, 2020, 1-16.	0.9	0
66	STABILITY OF STRUCTURED PREY-PREDATOR MODEL. , 2006, , .		0
67	Modeling of Epidemics with Delays and Spatial Heterogeneity. , 2009, , 201-272.		Ο