Francesca Pentimalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9450872/publications.pdf

Version: 2024-02-01

91712 109137 5,520 114 35 69 citations h-index g-index papers 156 156 156 7992 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	CONFIRM trial: what is the real efficacy of second-line immunotherapy in mesothelioma?. Lancet Oncology, The, 2022, 23, e13.	5.1	7
2	Comparison of 3 Randomized Clinical Trials of Frontline Therapies for Malignant Pleural Mesothelioma. JAMA Network Open, 2022, 5, e221490.	2.8	29
3	Cancer Stem Cells and Their Possible Implications in Cervical Cancer: A Short Review. International Journal of Molecular Sciences, 2022, 23, 5167.	1.8	19
4	The Emerging Role of Cyclin-Dependent Kinase Inhibitors in Treating Diet-Induced Obesity: New Opportunities for Breast and Ovarian Cancers?. Cancers, 2022, 14, 2709.	1.7	2
5	Is There Already a Need of Reckoning on Cancer Immunotherapy?. Frontiers in Pharmacology, 2021, 12, 638279.	1.6	4
6	Could MicroRNAs Be Useful Tools to Improve the Diagnosis and Treatment of Rare Gynecological Cancers? A Brief Overview. International Journal of Molecular Sciences, 2021, 22, 3822.	1.8	12
7	An Overview of the Role of Long Non-Coding RNAs in Human Choriocarcinoma. International Journal of Molecular Sciences, 2021, 22, 6506.	1.8	8
8	LncRNA MORT (ZNF667-AS1) in Cancerâ€"Is There a Possible Role in Gynecological Malignancies?. International Journal of Molecular Sciences, 2021, 22, 7829.	1.8	7
9	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /0	Overlock 1	0 Tf 50 422 <mark>Tc</mark>
10	RBL1/p107 Expression Levels Are Modulated by Multiple Signaling Pathways. Cancers, 2021, 13, 5025.	1.7	4
10	RBL1/p107 Expression Levels Are Modulated by Multiple Signaling Pathways. Cancers, 2021, 13, 5025. The Oncolytic Caprine Herpesvirus 1 (CpHV-1) Induces Apoptosis and Synergizes with Cisplatin in Mesothelioma Cell Lines: A New Potential Virotherapy Approach. Viruses, 2021, 13, 2458.	1.7	9
	The Oncolytic Caprine Herpesvirus 1 (CpHV-1) Induces Apoptosis and Synergizes with Cisplatin in		
11	The Oncolytic Caprine Herpesvirus 1 (CpHV-1) Induces Apoptosis and Synergizes with Cisplatin in Mesothelioma Cell Lines: A New Potential Virotherapy Approach. Viruses, 2021, 13, 2458. Pharmacological Inhibition of WEE1 Potentiates the Antitumoral Effect of the dl922-947 Oncolytic Virus in Malignant Mesothelioma Cell Lines. International Journal of Molecular Sciences, 2020, 21,	1.5	9
11 12	The Oncolytic Caprine Herpesvirus 1 (CpHV-1) Induces Apoptosis and Synergizes with Cisplatin in Mesothelioma Cell Lines: A New Potential Virotherapy Approach. Viruses, 2021, 13, 2458. Pharmacological Inhibition of WEE1 Potentiates the Antitumoral Effect of the dl922-947 Oncolytic Virus in Malignant Mesothelioma Cell Lines. International Journal of Molecular Sciences, 2020, 21, 7333.	1.5	9
11 12 13	The Oncolytic Caprine Herpesvirus 1 (CpHV-1) Induces Apoptosis and Synergizes with Cisplatin in Mesothelioma Cell Lines: A New Potential Virotherapy Approach. Viruses, 2021, 13, 2458. Pharmacological Inhibition of WEE1 Potentiates the Antitumoral Effect of the dl922-947 Oncolytic Virus in Malignant Mesothelioma Cell Lines. International Journal of Molecular Sciences, 2020, 21, 7333. Targeting SRC Family Kinases in Mesothelioma: Time to Upgrade. Cancers, 2020, 12, 1866. HLA-B*44 and C*01 Prevalence Correlates with Covid19 Spreading across Italy. International Journal of	1.5 1.8 1.7	9 4
11 12 13 14	The Oncolytic Caprine Herpesvirus 1 (CpHV-1) Induces Apoptosis and Synergizes with Cisplatin in Mesothelioma Cell Lines: A New Potential Virotherapy Approach. Viruses, 2021, 13, 2458. Pharmacological Inhibition of WEE1 Potentiates the Antitumoral Effect of the dl922-947 Oncolytic Virus in Malignant Mesothelioma Cell Lines. International Journal of Molecular Sciences, 2020, 21, 7333. Targeting SRC Family Kinases in Mesothelioma: Time to Upgrade. Cancers, 2020, 12, 1866. HLA-B*44 and C*01 Prevalence Correlates with Covid19 Spreading across Italy. International Journal of Molecular Sciences, 2020, 21, 5205.	1.5 1.8 1.7	9 4 6 73
11 12 13 14	The Oncolytic Caprine Herpesvirus 1 (CpHV-1) Induces Apoptosis and Synergizes with Cisplatin in Mesothelioma Cell Lines: A New Potential Virotherapy Approach. Viruses, 2021, 13, 2458. Pharmacological Inhibition of WEE1 Potentiates the Antitumoral Effect of the dl922-947 Oncolytic Virus in Malignant Mesothelioma Cell Lines. International Journal of Molecular Sciences, 2020, 21, 7333. Targeting SRC Family Kinases in Mesothelioma: Time to Upgrade. Cancers, 2020, 12, 1866. HLA-B*44 and C*01 Prevalence Correlates with Covid19 Spreading across Italy. International Journal of Molecular Sciences, 2020, 21, 5205. P53-regulated miR-320a targets PDL1 and is downregulated in malignant mesothelioma. Cell Death and Disease, 2020, 11, 748. Coronavirus Disease (Covid-19): What Are We Learning in a Country With High Mortality Rate?.	1.5 1.8 1.7 1.8	9 4 6 73 27

#	Article	IF	CITATIONS
19	SMART (Single Molecule Analysis of Resection Tracks) Technique for Assessing DNA end-Resection in Response to DNA Damage. Bio-protocol, 2020, 10, e3701.	0.2	4
20	Cancer, immunity and inflammation. Report from the CDD Cambridge Conferences 2018 and 2019. Cell Death and Disease, 2019, 10, 798.	2.7	21
21	The Oncolytic Virus dl922-947 Triggers Immunogenic Cell Death in Mesothelioma and Reduces Xenograft Growth. Frontiers in Oncology, 2019, 9, 564.	1.3	38
22	Translating RB1 predictive value in clinical cancer therapy: Are we there yet?. Biochemical Pharmacology, 2019, 166, 323-334.	2.0	10
23	Targeted therapy based on p53 reactivation reduces both glioblastoma cell growth and resistance to temozolomide. International Journal of Oncology, 2019, 54, 2189-2199.	1.4	15
24	Depletion of the RNA binding protein HNRNPD impairs homologous recombination by inhibiting DNA-end resection and inducing R-loop accumulation. Nucleic Acids Research, 2019, 47, 4068-4085.	6.5	41
25	Insert: Molecular Markers of Mesothelioma Aiding in Diagnostic Challenges: The Combined Use of p16 and BAP1., 2019,, 109-115.		1
26	Autophagy in disease: hunger for translation. Cell Death and Disease, 2019, 10, 247.	2.7	9
27	Cell death pathologies: targeting death pathways and the immune system for cancer therapy. Genes and Immunity, 2019, 20, 539-554.	2.2	39
28	RBL2/p130 is a direct AKT target and is required to induce apoptosis upon AKT inhibition in lung cancer and mesothelioma cell lines. Oncogene, 2018, 37, 3657-3671.	2.6	24
29	Antitumoral potential, antioxidant activity and carotenoid content of two Southern Italy tomato cultivars extracts: San Marzano and Corbarino. Journal of Cellular Physiology, 2018, 233, 1266-1277.	2.0	34
30	Updates from the TP53 universe. Cell Death and Differentiation, 2018, 25, 10-12.	5.0	7
31	NONO ubiquitination is mediated by FBW7 and GSK3 \hat{l}^2 via a degron lost upon chromosomal rearrangement in cancer. Journal of Cellular Physiology, 2018, 233, 4338-4344.	2.0	11
32	BCL2: a 30-year tale of life, death and much more to come. Cell Death and Differentiation, 2018, 25, 7-9.	5.0	22
33	RBL2/p130: a direct AKT substrate and mediator of AKT inhibition-induced apoptosis. Oncoscience, 2018, 5, 278-280.	0.9	7
34	Thymic Tumors and Lymphomas: The ClinicalÂlmpact of Their Underlying Molecular Features. Current Clinical Pathology, 2018, , 129-161.	0.0	0
35	SRC Family Kinase Inhibition in Ewing Sarcoma Cells Induces p38 MAP Kinase-Mediated Cytotoxicity and Reduces Cell Migration. Journal of Cellular Physiology, 2017, 232, 129-135.	2.0	16
36	Flavopiridol: An Old Drug With New Perspectives? Implication for Development of New Drugs. Journal of Cellular Physiology, 2017, 232, 312-322.	2.0	22

3

#	Article	IF	CITATIONS
37	Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells. Biomedicine and Pharmacotherapy, 2017, 87, 755-758.	2.5	36
38	Calretinin Immunoreactivity in the Human Testis Throughout Fetal Life. Journal of Cellular Physiology, 2017, 232, 1872-1878.	2.0	11
39	Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation. Oncotarget, 2017, 8, 28939-28958.	0.8	57
40	DNA Fiber Assay upon Treatment with Ultraviolet Radiations. Bio-protocol, 2017, 7, e2301.	0.2	4
41	Let-7d miRNA Shows Both Antioncogenic and Oncogenic Functions in Osteosarcoma-Derived 3AB-OS Cancer Stem Cells. Journal of Cellular Physiology, 2016, 231, 1832-1841.	2.0	41
42	NONO regulates the intra-S-phase checkpoint in response to UV radiation. Oncogene, 2016, 35, 567-576.	2.6	29
43	HUR protects <i>NONO</i> from degradation by mir320, which is induced by p53 upon UV irradiation. Oncotarget, 2016, 7, 78127-78139.	0.8	20
44	Abstract 3747: Oncolytic viruses as a possible therapeutic strategy against malignant mesothelioma. Cancer Research, 2016, 76, 3747-3747.	0.4	1
45	A pilot study on the impact of known drug-drug interactions in cancer patients. Journal of Experimental and Clinical Cancer Research, 2015, 34, 89.	3.5	26
46	RB1 dual role in proliferation and apoptosis: Cell fate control and implications for cancer therapy. Oncotarget, 2015, 6, 17873-17890.	0.8	125
47	SRC Family Kinase Inhibition Through a New Pyrazolo[3,4- <i>d</i>)Pyrimidine Derivative as a Feasible Approach for Glioblastoma Treatment. Journal of Cellular Biochemistry, 2015, 116, 856-863.	1.2	26
48	pRb2/p130 Localizes to the Cytoplasm in Diffuse Gastric Cancer. Journal of Cellular Physiology, 2015, 230, 802-805.	2.0	10
49	Abstract LB-080: Reactivating RBL2/p130 oncosuppressive function as a new, possible antitumoral strategy. , 2015 , , .		2
50	SRC family kinase (SFK) inhibition reduces rhabdomyosarcoma cell growth (i) in vitro (i) and (i) in vivo (i) and triggers p38 MAP kinase-mediated differentiation. Oncotarget, 2015, 6, 12421-12435.	0.8	21
51	Pharmacological targeting of p53 through RITA is an effective antitumoral strategy for malignant pleural mesothelioma. Cell Cycle, 2014, 13, 652-665.	1.3	36
52	Antineoplastic activity of povidone-iodine on different mesothelioma cell lines: results of in vitro study. European Journal of Cardio-thoracic Surgery, 2014, 45, 993-1000.	0.6	16
53	Abrogating G2/M checkpoint through WEE1 inhibition in combination with chemotherapy as a promising therapeutic approach for mesothelioma. Cancer Biology and Therapy, 2014, 15, 380-388.	1.5	24
54	MicroRNA-29b-1 impairs in vitro cell proliferation, self-renewal and chemoresistance of human osteosarcoma 3AB-OS cancer stem cells. International Journal of Oncology, 2014, 45, 2013-2023.	1.4	57

#	Article	IF	CITATIONS
55	Mass spectrometryâ€based proteomics: The road to lung cancer biomarker discovery. Mass Spectrometry Reviews, 2013, 32, 129-142.	2.8	69
56	Homeostasis model assessment to detect insulin resistance and identify patients at high risk of breast cancer development: National Cancer Institute of Naples experience. Journal of Experimental and Clinical Cancer Research, 2013, 32, 14.	3.5	29
57	ATP-noncompetitive CDK inhibitors for cancer therapy: an overview. Expert Opinion on Investigational Drugs, 2013, 22, 895-906.	1.9	36
58	1056 Pharmacological Targeting of p53 Effectively Induces Apoptosis in Malignant Mesothelioma Cell Lines. European Journal of Cancer, 2012, 48, S255.	1.3	0
59	Modeling human osteosarcoma in mice through 3ABâ€OS cancer stem cell xenografts. Journal of Cellular Biochemistry, 2012, 113, 3380-3392.	1.2	36
60	New pyrazolo[3,4-d]pyrimidine SRC inhibitors induce apoptosis in mesothelioma cell lines through p27 nuclear stabilization. Oncogene, 2012, 31, 929-938.	2.6	37
61	The burden of breast cancer in Italy: mastectomies and quadrantectomies performed between 2001 and 2008 based on nationwide hospital discharge records. Journal of Experimental and Clinical Cancer Research, 2012, 31, 96.	3.5	12
62	Antitumor activity of new pyrazolo[3,4- <i>d</i>) pyrimidine SRC kinase inhibitors in Burkitt lymphoma cell lines and its enhancement by WEE1 inhibition. Cell Cycle, 2012, 11, 1029-1039.	1.3	27
63	Tracking the 2009 H1N1 influenza virus in the Italian region Campania. Journal of Cellular Physiology, 2012, 227, 2813-2817.	2.0	2
64	Directed <i>in vivo</i> angiogenesis assay and the study of systemic neoangiogenesis in cancer. International Journal of Cancer, 2011, 128, 1505-1508.	2.3	23
65	Peptides or Small Molecules? Different Approaches to Develop More Effective CDK Inhibitors. Current Medicinal Chemistry, 2011, 18, 2854-2866.	1.2	40
66	Abstract LB-227: New SRC inhibitors induce p27-mediated apoptosis in mesothelioma cell lines. , 2011, , .		0
67	Downregulation and aberrant promoter methylation of <i>p16INK4A</i> : A possible novel heritable susceptibility marker to retinoblastoma. Journal of Cellular Physiology, 2010, 223, 143-150.	2.0	38
68	Rb family proteins in gastric cancer (Review). Oncology Reports, 2010, 24, 1411-8.	1.2	13
69	New pyrazoloâ€[3,4― <i>d</i>]â€pyrimidine derivative Src kinase inhibitors lead to cell cycle arrest and tumor growth reduction of human medulloblastoma cells. FASEB Journal, 2010, 24, 2881-2892.	0.2	26
70	Metabolic syndrome affects breast cancer risk in postmenopausal women: National Cancer Institute of Naples experience. Cancer Biology and Therapy, 2010, 10, 1240-1243.	1.5	84
71	CXCR4/YY1 inhibition impairs VEGF network and angiogenesis during malignancy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14484-14489.	3.3	104
72	Predicting breast cancer outcome: Traditional prognosticators still on center stage. Cancer Biology and Therapy, 2010, 9, 274-276.	1.5	0

#	Article	lF	CITATIONS
73	44 A miRNA EXPRESSION PROFILING IDENTIFIES MIR-145 AS A KEY PLAYER IN HUMAN MALIGNANT PLEURAL MESOTHELIOMA. Cancer Treatment Reviews, 2010, 36, S108.	3.4	О
74	Retinoblastoma beyond <i>RB1</i> : recent advances in genetic biomarkers. Expert Review of Ophthalmology, 2010, 5, 717-721.	0.3	2
75	Dysfunction of the RB Retinoblastoma Gene in Cancer. , 2010, , 109-122.		2
76	The antiretroviral nucleoside analogue Abacavir reduces cell growth and promotes differentiation of human medulloblastoma cells. International Journal of Cancer, 2009, 125, 235-243.	2.3	35
77	Insertional mutagenesis and development of malignancies induced by integrating gene delivery systems: Implications for the design of safer gene-based interventions in patients. Drug News and Perspectives, 2009, 22, 185.	1.9	33
78	Promises and drawbacks of targeting cell cycle kinases in cancer. Discovery Medicine, 2009, 8, 177-80.	0.5	8
79	HMGA1 protein is a novel target of the ATM kinase. European Journal of Cancer, 2008, 44, 2668-2679.	1.3	22
80	Inducing the uptake of the deadly executioner in cancer cells. Cancer Biology and Therapy, 2008, 7, 955-957.	1.5	0
81	Transcriptional Profile of Ki-Ras-Induced Transformation of Thyroid Cells. Cancer Investigation, 2007, 25, 256-266.	0.6	4
82	Involvement of H4(D10S170) protein in ATM-dependent response to DNA damage. Oncogene, 2007, 26, 6167-6175.	2.6	45
83	Endocannabinoids as emerging suppressors of angiogenesis and tumor invasion (review). Oncology Reports, 2007, 17, 813-6.	1.2	40
84	Haploinsufficiency of the Hmga1 Gene Causes Cardiac Hypertrophy and Myelo-Lymphoproliferative Disorders in Mice. Cancer Research, 2006, 66, 2536-2543.	0.4	104
85	High-mobility-group A1 (HMGA1) proteins down-regulate the expression of the recombination activating gene 2 (RAG2). Biochemical Journal, 2005, 389, 91-97.	1.7	12
86	Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene, 2005, 24, 3427-3435.	2.6	137
87	HMGA1 protein expression sensitizes cells to cisplatin-induced cell death. Oncogene, 2005, 24, 6809-6819.	2.6	29
88	Adenoviral transduction of TESTIN gene into breast and uterine cancer cell lines promotes apoptosis and tumor reduction in vivo. Clinical Cancer Research, 2005, 11, 806-13.	3.2	36
89	Identification of the Genes Up- and Down-Regulated by the High Mobility Group A1 (HMGA1) Proteins. Cancer Research, 2004, 64, 5728-5735.	0.4	46
90	Alterations of the Tumor Suppressor Gene Parkin in Non-Small Cell Lung Cancer. Clinical Cancer Research, 2004, 10, 2720-2724.	3.2	105

#	Article	IF	CITATIONS
91	HMGA1 Protein Overexpression in Human Breast Carcinomas. Clinical Cancer Research, 2004, 10, 7637-7644.	3.2	69
92	Therapy of human pancreatic carcinoma based on suppression of HMGA1 protein synthesis in preclinical models. Cancer Gene Therapy, 2004, 11, 633-641.	2.2	25
93	High mobility group A1 expression correlates with the histological grade of human glial tumors. Oncology Reports, 2004, 11, 1209.	1.2	14
94	High mobility group A1 expression correlates with the histological grade of human glial tumors. Oncology Reports, 2004, 11, 1209-13.	1.2	19
95	Thymosin beta-10 gene expression as a possible tool in diagnosis of thyroid neoplasias. Oncology Reports, 2004, 12, 239-43.	1.2	13
96	Negative Regulation of BRCA1 Gene Expression by HMGA1 Proteins Accounts for the Reduced BRCA1 Protein Levels in Sporadic Breast Carcinoma. Molecular and Cellular Biology, 2003, 23, 2225-2238.	1.1	119
97	Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5956-5961.	3.3	283
98	The BCSC-1 locus at chromosome 11q23-q24 is a candidate tumor suppressor gene. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11517-11522.	3.3	47
99	A 3.4-kbp transcript of ZNF331 is solely expressed in follicular thyroid adenomas. Cytogenetic and Genome Research, 2003, 101, 113-117.	0.6	16
100	Loss of Hmga1 gene function affects embryonic stem cell lymphohematopoietic differentiation. FASEB Journal, 2003, 17, 1-27.	0.2	63
101	HMGA1 protein over-expression is a frequent feature of epithelial ovarian carcinomas. Carcinogenesis, 2003, 24, 1191-1198.	1.3	7 5
102	A truncated HMGA1 gene induces proliferation of the 3T3-L1 pre-adipocytic cells: a model of human lipomas. Carcinogenesis, 2003, 24, 1861-1869.	1.3	28
103	Suppression of HMGA2 protein synthesis could be a tool for the therapy of well differentiated liposarcomas overexpressing HMGA2. Cancer Research, 2003, 63, 7423-7.	0.4	27
104	RET Activation and Clinicopathologic Features in Poorly Differentiated Thyroid Tumors. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 370-379.	1.8	99
105	The <i>RET/PTC</i> Oncogene Is Frequently Activated in Oncocytic Thyroid Tumors (Hurthle Cell) Tj ETQq1 1 0.78 Endocrinology and Metabolism, 2002, 87, 364-369.	4314 rgBT 1.8	/Overlock 1 93
106	RET Expression in Papillary Thyroid Cancer from Patients Irradiated in Childhood for Benign Conditions. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 3941-3946.	1.8	72
107	The Homeodomain-Interacting Protein Kinase 2 Gene Is Expressed Late in Embryogenesis and Preferentially in Retina, Muscle, and Neural Tissues. Biochemical and Biophysical Research Communications, 2002, 290, 942-947.	1.0	47
108	High mobility group HMGI(Y) protein expression in human colorectal hyperplastic and neoplastic diseases. International Journal of Cancer, 2001, 91, 147-151.	2.3	7

#	Article	IF	CITATIONS
109	High mobility group I (Y) proteins bind HIPK2, a serine-threonine kinase protein which inhibits cell growth. Oncogene, 2001, 20, 6132-6141.	2.6	86
110	High mobility group HMGI(Y) protein expression in human colorectal hyperplastic and neoplastic diseases. International Journal of Cancer, 2001, 91, 147-151.	2.3	82
111	Overexpressed cyclin D3 contributes to retaining the growth inhibitor p27 in the cytoplasm of thyroid tumor cells. Journal of Clinical Investigation, 1999, 104, 865-874.	3.9	110
112	High Prevalence of RET/PTC Rearrangements in Ukrainian and Belarussian Post-Chernobyl Thyroid Papillary Carcinomas: A Strong Correlation between RET/PTC3 and the Solid-Follicular Variant. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 4232-4238.	1.8	187
113	Endocannabinoids as emerging suppressors of angiogenesis and tumor invasion (Review). Oncology Reports, 0, , .	1.2	19
114	HMGA2 locus rearrangement in a case of acute lymphoblastic leukemia. International Journal of Oncology, $0, , .$	1.4	6