Dorien Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/945039/publications.pdf Version: 2024-02-01

		36203	30848
151	11,579	51	102
papers	citations	h-index	g-index
150	150	150	10074
153	153	153	10274
all docs	docs citations	times ranked	citing authors

DODIEN DETEDS

#	Article	IF	CITATIONS
1	PKD2, a Gene for Polycystic Kidney Disease That Encodes an Integral Membrane Protein. Science, 1996, 272, 1339-1342.	6.0	1,303
2	Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature, 1995, 376, 348-351.	13.7	1,140
3	Unified Criteria for Ultrasonographic Diagnosis of ADPKD. Journal of the American Society of Nephrology: JASN, 2009, 20, 205-212.	3.0	590
4	Polycystic kidney disease. Nature Reviews Disease Primers, 2018, 4, 50.	18.1	435
5	Genetic Heterogeneity in Rubinstein-Taybi Syndrome: Mutations in Both the CBP and EP300 Genes Cause Disease. American Journal of Human Genetics, 2005, 76, 572-580.	2.6	416
6	Conjunction dysfunction: CBP/p300 in human disease. Trends in Genetics, 1998, 14, 178-183.	2.9	404
7	Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nature Genetics, 2011, 43, 20-22.	9.4	308
8	Polycystin-1 and -2 Dosage Regulates Pressure Sensing. Cell, 2009, 139, 587-596.	13.5	299
9	Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Human Molecular Genetics, 2004, 13, 3069-3077.	1.4	289
10	Chromosome 4 localization of a second gene for autosomal dominant polycystic kidney disease. Nature Genetics, 1993, 5, 359-362.	9.4	272
11	Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Human Molecular Genetics, 2007, 16, 3188-3196.	1.4	183
12	Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. Journal of Cell Biology, 2004, 166, 637-643.	2.3	175
13	Toxic tubular injury in kidneys from Pkd1-deletion mice accelerates cystogenesis accompanied by dysregulated planar cell polarity and canonical Wnt signaling pathways. Human Molecular Genetics, 2009, 18, 2532-2542.	1.4	134
14	Genotype-Renal Function Correlation in Type 2 Autosomal Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2003, 14, 1164-1174.	3.0	129
15	Polycystin-1, the product of the polycystic kidney disease 1 gene, co-localizes with desmosomes in MDCK cells. Human Molecular Genetics, 2000, 9, 2743-2750.	1.4	122
16	Autosomal dominant polycystic kidney disease: evidence for the existence of a third locus in a Portuguese family. Human Genetics, 1995, 96, 83-88.	1.8	115
17	Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. Human Molecular Genetics, 2003, 12, 441-450.	1.4	115
18	Curcumin inhibits cystogenesis by simultaneous interference of multiple signaling pathways: in vivo evidence from a <i>Pkd1</i> -deletion model. American Journal of Physiology - Renal Physiology, 2011, 300, F1193-F1202.	1.3	112

#	Article	IF	CITATIONS
19	Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease. Journal of Clinical Investigation, 2015, 125, 2399-2412.	3.9	107
20	Altered Hippo signalling in polycystic kidney disease. Journal of Pathology, 2011, 224, 133-142.	2.1	104
21	Genetic heterogeneity in Rubinstein-Taybi syndrome: delineation of the phenotype of the first patients carrying mutations in EP300. Journal of Medical Genetics, 2007, 44, 327-333.	1.5	97
22	Diagnostic analysis of the Rubinstein-Taybi syndrome: five cosmids should be used for microdeletion detection and low number of protein truncating mutations. Journal of Medical Genetics, 2000, 37, 168-176.	1.5	95
23	A Spectrum of Mutations in the Second Gene for Autosomal Dominant Polycystic Kidney Disease (PKD2). American Journal of Human Genetics, 1997, 61, 547-555.	2.6	92
24	Phenotype and genotype in 52 patients with Rubinstein–Taybi syndrome caused by <i>EP300</i> mutations. American Journal of Medical Genetics, Part A, 2016, 170, 3069-3082.	0.7	91
25	Distinct subcellular expression of endogenous polycystin-2 in the plasma membrane and Golgi apparatus of MDCK cells. Human Molecular Genetics, 2002, 11, 59-67.	1.4	89
26	Association of Urinary Biomarkers With Disease Severity in Patients With Autosomal Dominant Polycystic Kidney Disease: A Cross-sectional Analysis. American Journal of Kidney Diseases, 2010, 56, 883-895.	2.1	89
27	Elevated TGFβ–Smad signalling in experimental <i>Pkd1</i> models and human patients with polycystic kidney disease. Journal of Pathology, 2010, 222, 21-31.	2.1	89
28	Dose-Dependent Effects of Sirolimus on mTOR Signaling and Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2012, 23, 842-853.	3.0	84
29	Construction of a 1.2-Mb Contig Surrounding, and Molecular Analysis of, the Human CREB-Binding Protein (CBP/CREBBP) Gene on Chromosome 16p13.3. Genomics, 1997, 42, 96-114.	1.3	79
30	Isolated polycystic liver disease as a distinct genetic disease, unlinked to polycystic kidney disease 1 and polycystic kidney disease 2. Hepatology, 1996, 23, 249-252.	3.6	78
31	Translational research in ADPKD: lessons from animal models. Nature Reviews Nephrology, 2014, 10, 587-601.	4.1	78
32	Effect of Lanreotide on Kidney Function in Patients With Autosomal Dominant Polycystic Kidney Disease. JAMA - Journal of the American Medical Association, 2018, 320, 2010.	3.8	78
33	Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). European Journal of Human Genetics, 1999, 7, 860-872.	1.4	77
34	Autosomal dominant polycystic kidney disease: modification of disease progression. Lancet, The, 2001, 358, 1439-1444.	6.3	77
35	Aberrant Splicing in the PKD2 Gene as a Cause of Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 1999, 10, 2342-2351.	3.0	77
36	Cellular localization and tissue distribution of polycystin-1. , 1999, 188, 439-446.		76

#	Article	IF	CITATIONS
37	Stat3 Controls Tubulointerstitial Communication during CKD. Journal of the American Society of Nephrology: JASN, 2016, 27, 3690-3705.	3.0	75
38	Exploring the Transcriptome of Ciliated Cells Using In Silico Dissection of Human Tissues. PLoS ONE, 2012, 7, e35618.	1.1	73
39	Copeptin, a surrogate marker for vasopressin, is associated with kidney function decline in subjects with autosomal dominant polycystic kidney disease. Nephrology Dialysis Transplantation, 2012, 27, 4131-4137.	0.4	72
40	Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling. ELife, 2016, 5, .	2.8	71
41	Location of mutations within the PKD2 gene influences clinical outcome. Kidney International, 2000, 57, 1444-1451.	2.6	70
42	Pathogenic Sequence for Dissecting Aneurysm Formation in a Hypomorphic Polycystic Kidney Disease 1 Mouse Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2177-2183.	1.1	70
43	Therapeutic potential of vasopressin V2 receptor antagonist in a mouse model for autosomal dominant polycystic kidney disease: optimal timing and dosing of the drug. Nephrology Dialysis Transplantation, 2011, 26, 2445-2453.	0.4	68
44	MYC activation cooperates with Vhl and Ink4a/Arf loss to induce clear cell renal cell carcinoma. Nature Communications, 2017, 8, 15770.	5.8	64
45	Deficiency of polycystinâ $\in 2$ reduces Ca 2+ channel activity and cell proliferation in ADPKD lymphoblastoid cells. FASEB Journal, 2004, 18, 884-886.	0.2	63
46	HIF-1α promotes cyst progression in a mouse model of autosomal dominant polycystic kidney disease. Kidney International, 2018, 94, 887-899.	2.6	63
47	Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. American Journal of Human Genetics, 2022, 109, 136-156.	2.6	62
48	Transgenic mice expressing tamoxifen-inducible Cre for somatic gene modification in renal epithelial cells. Genesis, 2006, 44, 225-232.	0.8	61
49	Scattered Deletion of PKD1 in Kidneys Causes a Cystic Snowball Effect and Recapitulates Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 1322-1333.	3.0	60
50	Genetic Variation of DKK3 May Modify Renal Disease Severity in ADPKD. Journal of the American Society of Nephrology: JASN, 2010, 21, 1510-1520.	3.0	59
51	Rationale and Design of the DIPAK 1 Study: A Randomized Controlled Clinical Trial Assessing the Efficacy of Lanreotide to Halt Disease Progression in Autosomal Dominant Polycystic Kidney Disease. American Journal of Kidney Diseases, 2014, 63, 446-455.	2.1	59
52	Proteomics of Urinary Vesicles Links Plakins and Complement to Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2016, 27, 3079-3092.	3.0	58
53	Mechanoprotection by Polycystins against Apoptosis Is Mediated through the Opening of Stretch-Activated K2P Channels. Cell Reports, 2012, 1, 241-250.	2.9	54
54	Signal transduction, chemotaxis, and cell aggregation in Dictyostelium discoideum cells without myosin heavy chain. Developmental Biology, 1988, 128, 158-163.	0.9	52

#	Article	IF	CITATIONS
55	Analysis of missense variants in the PKHD1-gene in patients with autosomal recessive polycystic kidney disease (ARPKD). Human Genetics, 2005, 118, 185-206.	1.8	51
56	Therapeutic targeting of BET bromodomain protein, Brd4, delays cyst growth in ADPKD. Human Molecular Genetics, 2015, 24, 3982-3993.	1.4	51
57	Increased Activity of Activator Protein-1 Transcription Factor Components ATF2, c-Jun, and c-Fos in Human and Mouse Autosomal Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2005, 16, 2724-2731.	3.0	50
58	Salsalate, but not metformin or canagliflozin, slows kidney cyst growth in an adult-onset mouse model of polycystic kidney disease. EBioMedicine, 2019, 47, 436-445.	2.7	50
59	Intracranial aneurysms in polycystic kidney disease linked to chromosome 4 Journal of the American Society of Nephrology: JASN, 1995, 6, 1670-1673.	3.0	49
60	Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2016, 27, 69-77.	3.0	48
61	Hyperphosphorylation of polycystin-2 at a critical residue in disease reveals an essential role for polycystin-1-regulated dephosphorylation. Human Molecular Genetics, 2013, 22, 1924-1939.	1.4	47
62	Detecting <i>PKD1</i> variants in polycystic kidney disease patients by single-molecule long-read sequencing. Human Mutation, 2017, 38, 870-879.	1.1	44
63	<i>CREBBP</i> mutations in individuals without Rubinstein–Taybi syndrome phenotype. American Journal of Medical Genetics, Part A, 2016, 170, 2681-2693.	0.7	43
64	Therapeutic NOTCH3 cysteine correction in CADASIL using exon skipping: <i>in vitro</i> proof of concept. Brain, 2016, 139, 1123-1135.	3.7	43
65	Cardiovascular Polycystins: Insights From Autosomal Dominant Polycystic Kidney Disease and Transgenic Animal Models. Trends in Cardiovascular Medicine, 2006, 16, 292-298.	2.3	42
66	Inhibition of Activin Signaling Slows Progression of Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2016, 27, 3589-3599.	3.0	42
67	Comprehensive transcriptome analysis of fluid shear stress altered gene expression in renal epithelial cells. Journal of Cellular Physiology, 2018, 233, 3615-3628.	2.0	42
68	Lanreotide Reduces Liver Growth In Patients With Autosomal Dominant Polycystic Liver and Kidney Disease. Gastroenterology, 2019, 157, 481-491.e7.	0.6	42
69	STAT5 drives abnormal proliferation in autosomal dominant polycystic kidney disease. Kidney International, 2017, 91, 575-586.	2.6	41
70	Sensing of tubular flow and renal electrolyte transport. Nature Reviews Nephrology, 2020, 16, 337-351.	4.1	41
71	Mutation Detection in the Repeated Part of the PKD1 Gene. American Journal of Human Genetics, 1997, 61, 1044-1052.	2.6	40
72	Aberrant Polycystin-1 Expression Results in Modification of Activator Protein-1 Activity, whereas Wnt Signaling Remains Unaffected. Journal of Biological Chemistry, 2004, 279, 27472-27481.	1.6	40

#	Article	IF	CITATIONS
73	Caenorhabditis elegans as a model for lysosomal storage disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 433-446.	1.8	40
74	Neonatal onset autosomal dominant polycystic kidney disease (ADPKD) in a patient homozygous for a <i>PKD2</i> missense mutation due to uniparental disomy. Journal of Medical Genetics, 2012, 49, 37-40.	1.5	40
75	High-Throughput Phenotypic Screening of Kinase Inhibitors to Identify Drug Targets for Polycystic Kidney Disease. SLAS Discovery, 2017, 22, 974-984.	1.4	40
76	Rubinstein-Taybi syndrome caused by a de novo reciprocal translocation t(2;16)(q36.3;p13.3). , 2000, 92, 47-52.		38
77	An XX male with the sex-determining region Y gene inserted in the long arm of chromosome 16. Fertility and Sterility, 2006, 86, 463.e1-463.e5.	0.5	38
78	Estimation of Total Kidney Volume in Autosomal Dominant Polycystic Kidney Disease. American Journal of Kidney Diseases, 2015, 66, 792-801.	2.1	36
79	Salt, but not protein intake, is associated with accelerated disease progression in autosomal dominant polycystic kidney disease. Kidney International, 2020, 98, 989-998.	2.6	36
80	Monoclonal Antibody Against Human Ovarian Tumor-Associated Antigens. Journal of the National Cancer Institute, 1986, , .	3.0	35
81	Variable Cyst Development in Autosomal Dominant Polycystic Kidney Disease: The Biologic Context. Journal of the American Society of Nephrology: JASN, 2016, 27, 3530-3538.	3.0	34
82	Common regulatory elements in the polycystic kidney disease 1 and 2 promoter regions. European Journal of Human Genetics, 2005, 13, 649-659.	1.4	33
83	Polycystic kidney disease: The complexity of planar cell polarity and signaling during tissue regeneration and cyst formation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1249-1255.	1.8	33
84	Drug prioritization using the semantic properties of a knowledge graph. Scientific Reports, 2019, 9, 6281.	1.6	33
85	Control of cAMP-induced gene expression by divergent signal transduction pathways. Genesis, 1991, 12, 25-34.	3.1	30
86	Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension. Laboratory Investigation, 2011, 91, 24-32.	1.7	30
87	Keloids in Rubinstein–Taybi syndrome: a clinical study. British Journal of Dermatology, 2014, 171, 615-621.	1.4	30
88	Tight junction composition is altered in the epithelium of polycystic kidneys. Journal of Pathology, 2008, 216, 120-128.	2.1	29
89	LRP5 variants may contribute to ADPKD. European Journal of Human Genetics, 2016, 24, 237-242.	1.4	28
90	European ADPKD Forum multidisciplinary position statement on autosomal dominant polycystic kidney disease care. Nephrology Dialysis Transplantation, 2018, 33, 563-573.	0.4	28

#	Article	IF	CITATIONS
91	Cyst expansion and regression in a mouse model of polycystic kidney disease. Kidney International, 2013, 83, 1099-1108.	2.6	27
92	Fluid shear stress-induced TGF-β/ALK5 signaling in renal epithelial cells is modulated by MEK1/2. Cellular and Molecular Life Sciences, 2017, 74, 2283-2298.	2.4	27
93	Meta-analysis of polycystic kidney disease expression profiles defines strong involvement of injury repair processes. American Journal of Physiology - Renal Physiology, 2017, 312, F806-F817.	1.3	26
94	Parallel microarray profiling identifies ErbB4 as a determinant of cyst growth in ADPKD and a prognostic biomarker for disease progression. American Journal of Physiology - Renal Physiology, 2017, 312, F577-F588.	1.3	26
95	Urinary Biomarkers to Identify Autosomal Dominant Polycystic Kidney Disease Patients With a High Likelihood of Disease Progression. Kidney International Reports, 2018, 3, 291-301.	0.4	26
96	Action to protect the independence and integrity of global health research. BMJ Global Health, 2019, 4, e001746.	2.0	26
97	A t(4;6)(q12;p23) translocation disrupts a membrane-associated O-acetyl transferase gene (MBOAT1) in a patient with a novel brachydactyly–syndactyly syndrome. European Journal of Human Genetics, 2007, 15, 743-751.	1.4	25
98	P2Y2R is a direct target of HIF-1α and mediates secretion-dependent cyst growth of renal cyst-forming epithelial cells. Purinergic Signalling, 2016, 12, 687-695.	1.1	25
99	The positive effect of selective prostaglandin E2 receptor EP2 and EP4 blockade on cystogenesis inÂvitro is counteracted by increased kidney inflammation inÂvivo. Kidney International, 2020, 98, 404-419.	2.6	25
100	The ACE insertion/deletion polymorphism has no influence on progression of renal function loss in autosomal dominant polycystic kidney disease. Nephrology Dialysis Transplantation, 2000, 15, 836-839.	0.4	24
101	Rapid Progression of Autosomal Dominant Polycystic Kidney Disease: Urinary Biomarkers as Predictors. American Journal of Nephrology, 2019, 50, 375-385.	1.4	24
102	Sheathless CE-MS based metabolic profiling of kidney tissue section samples from a mouse model of Polycystic Kidney Disease. Scientific Reports, 2019, 9, 806.	1.6	24
103	Rubinstein–Taybi syndrome (CREBBP, EP300). European Journal of Human Genetics, 2011, 19, 3-3.	1.4	23
104	Targeted deletion of the AAA-ATPase Ruvbl1 in mice disrupts ciliary integrity and causes renal disease and hydrocephalus. Experimental and Molecular Medicine, 2018, 50, 1-17.	3.2	22
105	Molecular pathways involved in injury-repair and ADPKD progression. Cellular Signalling, 2020, 72, 109648.	1.7	22
106	In silico discovery and experimental validation of new protein–protein interactions. Proteomics, 2011, 11, 843-853.	1.3	20
107	Folate-dactolisib conjugates for targeting tubular cells in polycystic kidneys. Journal of Controlled Release, 2019, 293, 113-125.	4.8	19
108	Association of Timing of Plasma Transfusion With Adverse Maternal Outcomes in Women With Persistent Postpartum Hemorrhage. JAMA Network Open, 2019, 2, e1915628.	2.8	18

#	Article	IF	CITATIONS
109	The Angiotensin-Converting Enzyme Genotype and Microalbuminuria in Autosomal Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 1999, 10, 1916-1920.	3.0	18
110	Altered distribution and co-localization of polycystin-2 with polycystin-1 in MDCK cells after wounding stress. Experimental Cell Research, 2004, 292, 219-230.	1.2	17
111	Urine Fetuin-A is a biomarker of autosomal dominant polycystic kidney disease progression. Journal of Translational Medicine, 2015, 13, 103.	1.8	17
112	Comparative transcriptomics of shear stress treated Pkd1â^'/â^' cells and pre-cystic kidneys reveals pathways involved in early polycystic kidney disease. Biomedicine and Pharmacotherapy, 2018, 108, 1123-1134.	2.5	17
113	Polycystin-1 dysfunction impairs electrolyte and water handling in a renal precystic mouse model for ADPKD. American Journal of Physiology - Renal Physiology, 2018, 315, F537-F546.	1.3	17
114	Renal cyst growth is attenuated by a combination treatment of tolvaptan and pioglitazone, while pioglitazone treatment alone is not effective. Scientific Reports, 2020, 10, 1672.	1.6	17
115	Two adults with Rubinstein–Taybi syndrome with mild mental retardation, glaucoma, normal growth and skull circumference, and camptodactyly of third fingers. American Journal of Medical Genetics, Part A, 2009, 149A, 2849-2854.	0.7	16
116	Glucose promotes secretion-dependent renal cyst growth. Journal of Molecular Medicine, 2016, 94, 107-117.	1.7	16
117	Hepatic Cyst Infection During Use of the Somatostatin Analog Lanreotide in Autosomal Dominant Polycystic Kidney Disease: An Interim Analysis of the Randomized Open-Label Multicenter DIPAK-1 Study. Drug Safety, 2017, 40, 153-167.	1.4	16
118	Prioritization of novel ADPKD drug candidates from disease-stage specific gene expression profiles. EBioMedicine, 2020, 51, 102585.	2.7	16
119	Urinary metabolites associate with the rate of kidney function decline in patients with autosomal dominant polycystic kidney disease. PLoS ONE, 2020, 15, e0233213.	1.1	16
120	Selective induction of gene expression and second-messenger accumulation in Dictyostelium discoideum by the partial chemotactic antagonist 8-p-chlorophenylthioadenosine 3',5'-cyclic monophosphate Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 9219-9223.	3.3	15
121	Deletion of the Caenorhabditis elegans homologues of the CLN3 gene, involved in human juvenile neuronal ceroid lipofuscinosis, causes a mild progeric phenotype. Journal of Inherited Metabolic Disease, 2005, 28, 1065-1080.	1.7	15
122	The Association of Combined Total Kidney and Liver Volume with Pain and Gastrointestinal Symptoms in Patients with Later Stage Autosomal Dominant Polycystic Kidney Disease. American Journal of Nephrology, 2017, 46, 239-248.	1.4	15
123	Pannexinâ€1 mediates fluid shear stressâ€sensitive purinergic signaling and cyst growth in polycystic kidney disease. FASEB Journal, 2020, 34, 6382-6398.	0.2	15
124	Biochemical analyses of the crustacean hyperglycemic hormone of the crayfish Astacus leptodactylus. General and Comparative Endocrinology, 1986, 61, 248-259.	0.8	14
125	Detection of translation terminating mutations in the PKD1 gene. Nephrology Dialysis Transplantation, 1996, 11, 5-9.	0.4	14
126	Quantification of Cre-mediated recombination by a novel strategy reveals a stable extra-chromosomal deletion-circle in mice. BMC Biotechnology, 2008, 8, 18.	1.7	14

#	Article	IF	CITATIONS
127	Innate immunity as a driving force in renal disease. Kidney International, 2008, 73, 7-8.	2.6	12
128	Tubular flow activates magnesium transport in the distal convoluted tubule. FASEB Journal, 2019, 33, 5034-5044.	0.2	12
129	Lithium, an inhibitor of cAMP-induced inositol 1,4,5-trisphosphate accumulation in Dictyostelium discoideum, inhibits activation of guanine-nucleotide-binding regulatory proteins, reduces activation of adenylylcyclase, but potentiates activation of guanylyl cyclase by cAMP. FEBS Journal, 1992, 209, 299-304.	0.2	11
130	Absence of PD-L1 expression on tumor cells in the context of an activated immune infiltrate may indicate impaired IFNÎ ³ signaling in non-small cell lung cancer. PLoS ONE, 2019, 14, e0216864.	1.1	11
131	Somatostatin in renal physiology and autosomal dominant polycystic kidney disease. Nephrology Dialysis Transplantation, 2020, 35, 1306-1316.	0.4	10
132	Cystic renalâ€epithelial derived induced pluripotent stem cells from polycystic kidney disease patients. Stem Cells Translational Medicine, 2020, 9, 478-490.	1.6	10
133	Characterisation of transcription factor profiles in polycystic kidney disease (PKD): identification and validation of STAT3 and RUNX1 in the injury/repair response and PKD progression. Journal of Molecular Medicine, 2019, 97, 1643-1656.	1.7	9
134	In vitro 3D phenotypic drug screen identifies celastrol as an effective <i>in vivo</i> inhibitor of polycystic kidney disease. Journal of Molecular Cell Biology, 2020, 12, 644-653.	1.5	9
135	Analysis of a large family with the second type of autosomal dominant polycystic kidney disease. Nephrology Dialysis Transplantation, 1996, 11, 13-17.	0.4	8
136	Presence of a 34-gene signature is a favorable prognostic marker in squamous non-small cell lung carcinoma. Journal of Translational Medicine, 2020, 18, 271.	1.8	8
137	Mutation detection for exons 2 to 10 of the Polycystic Kidney Disease 1 (PKD1)-gene by DGGE. European Journal of Human Genetics, 2001, 9, 957-960.	1.4	7
138	A complex chromosome 7q rearrangement identified in a patient with mental retardation, anxiety disorder, and autistic features. American Journal of Medical Genetics, Part A, 2010, 152A, 427-433.	0.7	7
139	Dose-Titrated Vasopressin V2 Receptor Antagonist Improves Renoprotection in a Mouse Model for Autosomal Dominant Polycystic Kidney Disease. American Journal of Nephrology, 2016, 44, 194-203.	1.4	7
140	Association of plasma somatostatin with disease severity and progression in patients with autosomal dominant polycystic kidney disease. BMC Nephrology, 2018, 19, 368.	0.8	6
141	Fourâ€jointed knockâ€out delays renal failure in an ADPKD model with kidney injury. Journal of Pathology, 2019, 249, 114-125.	2.1	6
142	Reducing YAP expression in <i>Pkd1</i> mutant mice does not improve the cystic phenotype. Journal of Cellular and Molecular Medicine, 2020, 24, 8876-8882.	1.6	5
143	Teaching molecular genetics: Chapter 2—Transgenesis and gene targeting: mouse models to study gene function and expression. Pediatric Nephrology, 2006, 21, 318-323.	0.9	4
144	Analysis of mutations within the intron20 splice donor site of CREBBP in patients with and without classical RSTS. European Journal of Human Genetics, 2016, 24, 1639-1643.	1.4	4

#	Article	IF	CITATIONS
145	Genomic organization and mutation screening of the human ortholog of Pkdr1 associated with polycystic kidney disease in the rat. European Journal of Medical Genetics, 2008, 51, 325-331.	0.7	3
146	The expression of somatostatin receptor 2 decreases during cyst growth in mice with polycystic kidney disease. Experimental Biology and Medicine, 2018, 243, 1092-1098.	1.1	3
147	A cross-platform metabolomics workflow for volume-restricted tissue samples: application to an animal model for polycystic kidney disease. Molecular BioSystems, 2017, 13, 1940-1945.	2.9	2
148	Heterozygous truncating mutation in the human homeobox gene GSH2 has no discernable phenotypic effect. Journal of Medical Genetics, 2002, 39, 686-688.	1.5	1
149	Polycystic Kidney Disease Caused by Bilineal Inheritance of Truncating PKD1 as Well as PKD2 Mutations. Kidney International Reports, 2020, 5, 1828-1832.	0.4	Ο
150	Loss of Function of Kidney‧pecific GLUT2 Blunts Hyperglycemia by Elevating Glycosuria in a Mouse Model of Diabetes. FASEB Journal, 2021, 35, .	0.2	0
151	Mechanoprotection by Polycystins Against Apoptosis is Mediated Through the Opening of Stretchâ€Activated K2P Channels. FASEB Journal, 2013, 27, 912.2.	0.2	0