Debby Van Dam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9450376/publications.pdf

Version: 2024-02-01

123 papers 6,087 citations

87723 38 h-index 79541 73 g-index

127 all docs

127 docs citations

127 times ranked 10214 citing authors

#	Article	IF	CITATIONS
1	The Glymphatic Hypothesis of Glaucoma: A Unifying Concept Incorporating Vascular, Biomechanical, and Biochemical Aspects of the Disease. BioMed Research International, 2017, 2017, 1-7.	0.9	1,089
2	Decreased expression of the GABAA receptor in fragile X syndrome. Brain Research, 2006, 1121, 238-245.	1.1	297
3	Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. European Journal of Neuroscience, 2003, 17, 388-396.	1.2	244
4	Immune hyperreactivity of $\hat{Al^2}$ plaque-associated microglia in Alzheimer's disease. Neurobiology of Aging, 2017, 55, 115-122.	1.5	205
5	Behavioural and psychological symptoms ofÂdementia in Down syndrome: Early indicators ofÂclinical Alzheimer's disease?. Cortex, 2015, 73, 36-61.	1.1	201
6	Drug discovery in dementia: the role of rodent models. Nature Reviews Drug Discovery, 2006, 5, 956-970.	21.5	189
7	Animal models in the drug discovery pipeline for Alzheimer's disease. British Journal of Pharmacology, 2011, 164, 1285-1300.	2.7	180
8	Adeno-associated Virus Gene Therapy With Cholesterol 24-Hydroxylase Reduces the Amyloid Pathology Before or After the Onset of Amyloid Plaques in Mouse Models of Alzheimer's Disease. Molecular Therapy, 2010, 18, 44-53.	3.7	166
9	Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain. Frontiers in Molecular Neuroscience, 2017, 10, 206.	1.4	136
10	Spatial learning, contextual fear conditioning and conditioned emotional response in Fmr1 knockout mice. Behavioural Brain Research, 2000, 117, 127-136.	1.2	133
11	PTZ-induced seizures in mice require a revised Racine scale. Epilepsy and Behavior, 2019, 95, 51-55.	0.9	129
12	Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23 model. Psychopharmacology, 2005, 180, 177-190.	1.5	119
13	Cognitive decline, neuromotor and behavioural disturbances in a mouse model for fragile-X-associated tremor/ataxia syndrome (FXTAS). Behavioural Brain Research, 2005, 162, 233-239.	1.2	117
14	Pharmacological treatment of fragile X syndrome with GABAergic drugs in a knockout mouse model. Behavioural Brain Research, 2012, 229, 244-249.	1.2	109
15	Cellular ageing, increased mortality and FTLDâ€₹DPâ€associated neuropathology in progranulin knockout mice. Journal of Pathology, 2012, 228, 67-76.	2.1	102
16	Region- and Age-Specific Changes in Glutamate Transport in the AÎ ² PP23 Mouse Model for Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 24, 287-300.	1.2	100
17	A new glaucoma hypothesis: a role of glymphatic system dysfunction. Fluids and Barriers of the CNS, 2015, 12, 16.	2.4	93
18	The GABA _A receptor is an FMRP target with therapeutic potential in fragile X syndrome. Cell Cycle, 2015, 14, 2985-2995.	1.3	87

#	Article	IF	Citations
19	Effect of Morris water maze diameter on visual-spatial learning in different mouse strains. Neurobiology of Learning and Memory, 2006, 85, 164-172.	1.0	86
20	Intracerebral adeno-associated virus-mediated gene transfer in rapidly progressive forms of metachromatic leukodystrophy. Human Molecular Genetics, 2006, 15, 53-64.	1.4	80
21	Altered circadian locomotor activity in APP23 mice: a model for BPSD disturbances. European Journal of Neuroscience, 2004, 20, 2757-2766.	1.2	74
22	Sleep and Alzheimer's disease: A pivotal role for the suprachiasmatic nucleus. Sleep Medicine Reviews, 2018, 40, 17-27.	3.8	71
23	Monoaminergic neurotransmitter alterations in postmortem brain regions of depressed and aggressive patients with Alzheimer's disease. Neurobiology of Aging, 2014, 35, 2691-2700.	1.5	70
24	Brain inflammation in a chronic epilepsy model: Evolving pattern of the translocator protein during epileptogenesis. Neurobiology of Disease, 2015, 82, 526-539.	2.1	69
25	Cognitive evaluation of disease-modifying efficacy of Galantamine and Memantine in the APP23 model. European Neuropsychopharmacology, 2006, 16, 59-69.	0.3	68
26	Actigraphic measurement of agitated behaviour in dementia. International Journal of Geriatric Psychiatry, 2006, 21, 388-393.	1.3	55
27	Brain Region-Specific Monoaminergic Correlates of Neuropsychiatric Symptoms in Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 41, 819-833.	1.2	53
28	Intraneuronal amyloid \hat{l}^2 and reduced brain volume in a novel APP T714I mouse model for Alzheimer's disease. Neurobiology of Aging, 2008, 29, 241-252.	1.5	52
29	Senescent Changes in Cerebrospinal Fluid Circulatory Physiology and Their Role in the Pathogenesis of Normal-tension Glaucoma. American Journal of Ophthalmology, 2013, 156, 5-14.e2.	1.7	52
30	APP23 Mice as a Model of Alzheimer's Disease: An Example of a Transgenic Approach to Modeling a CNS Disorder. CNS Spectrums, 2005, 10, 207-222.	0.7	51
31	Neuropsychiatric Disturbances in Alzheimer's Disease: What Have We Learned from Neuropathological Studies?. Current Alzheimer Research, 2016, 13, 1145-1164.	0.7	50
32	Non human primate models for Alzheimer's disease-related research and drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 187-200.	2.5	50
33	The monoaminergic footprint of depression and psychosis in dementia with Lewy bodies compared to Alzheimer's disease. Alzheimer's Research and Therapy, 2015, 7, 7.	3.0	47
34	Aripiprazole in the treatment of Alzheimer's disease. Expert Opinion on Pharmacotherapy, 2013, 14, 459-474.	0.9	46
35	Altered ingestive behavior, weight changes, and intact olfactory sense in an APP overexpression model Behavioral Neuroscience, 2008, 122, 491-497.	0.6	45
36	A multidisciplinary approach unravels early and persistent effects of X-ray exposure at the onset of prenatal neurogenesis. Journal of Neurodevelopmental Disorders, 2015, 7, 3.	1.5	44

#	Article	IF	Citations
37	The Glymphatic System: A New Player in Ocular Diseases?. , 2016, 57, 5426.		42
38	Hyperactivity, neuromotor defects, and impaired learning and memory in a mouse model for metachromatic leukodystrophy. Brain Research, 2001, 907, 35-43.	1.1	41
39	Cognitive evaluation of disease-modifying efficacy of donepezil in the APP23 mouse model for Alzheimer's disease. Psychopharmacology, 2008, 197, 37-43.	1.5	41
40	Analysis of cholinergic markers, biogenic amines, and amino acids in the CNS of two APP overexpression mouse models. Neurochemistry International, 2005, 46, 409-422.	1.9	39
41	Neutrophil Gelatinase-Associated Lipocalin and its Receptors in Alzheimer's Disease (AD) Brain Regions: Differential Findings in AD with and without Depression. Journal of Alzheimer's Disease, 2016, 55, 763-776.	1.2	39
42	Morphological changes in the enteric nervous system of aging and APP23 transgenic mice. Brain Research, 2011, 1378, 43-53.	1.1	37
43	Novel and sensitive reversed-phase high-pressure liquid chromatography method with electrochemical detection for the simultaneous and fast determination of eight biogenic amines and metabolites in human brain tissue. Journal of Chromatography A, 2014, 1353, 28-39.	1.8	36
44	Mood and male sexual behaviour in the APP23 model of Alzheimer's disease. Behavioural Brain Research, 2007, 180, 146-151.	1.2	34
45	Central administration of obestatin fails to show inhibitory effects on food and water intake in mice. Regulatory Peptides, 2009, 156, 77-82.	1.9	34
46	Biochemical and behavioural phenotyping of a mouse model for GAMT deficiency. Journal of the Neurological Sciences, 2005, 231, 49-55.	0.3	33
47	Brain Serotonergic and Noradrenergic Deficiencies in Behavioral Variant Frontotemporal Dementia Compared to Early-Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 53, 1079-1096.	1.2	33
48	Serum MHPG Strongly Predicts Conversion to Alzheimer's Disease in Behaviorally Characterized Subjects with Down Syndrome. Journal of Alzheimer's Disease, 2014, 43, 871-891.	1.2	32
49	Acute modulation of the cholinergic system in the mouse brain detected by pharmacological resting-state functional MRI. Neurolmage, 2015, 109, 151-159.	2.1	32
50	Serotonergic Dysfunction in Amyotrophic Lateral Sclerosis and Parkinson's Disease: Similar Mechanisms, Dissimilar Outcomes. Frontiers in Neuroscience, 2018, 12, 185.	1.4	32
51	Anti-Tau Monoclonal Antibodies Derived from Soluble and Filamentous Tau Show Diverse Functional Properties in vitro and in vivo. Journal of Alzheimer's Disease, 2018, 65, 265-281.	1.2	32
52	Neuroimaging of Subacute Brain Inflammation and Microstructural Changes Predicts Long-Term Functional Outcome after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 768-788.	1.7	32
53	Aggressive male APP23 mice modeling behavioral alterations in dementia Behavioral Neuroscience, 2006, 120, 1380-1383.	0.6	31
54	Alzheimer's disease: Neurotransmitters of the sleep-wake cycle. Neuroscience and Biobehavioral Reviews, 2019, 105, 72-80.	2.9	29

#	Article	IF	CITATIONS
55	Increased Cerebrospinal Fluid Production as a Possible Mechanism Underlying Caffeine's Protective Effect against Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 2011, 1-6.	1.1	25
56	Age-related macular degeneration, glaucoma and Alzheimer's disease: amyloidogenic diseases with the same glymphatic background?. Cellular and Molecular Life Sciences, 2016, 73, 4299-4301.	2.4	25
57	Everolimus depletes plaque macrophages, abolishes intraplaque neovascularization and improves survival in mice with advanced atherosclerosis. Vascular Pharmacology, 2019, 113, 70-76.	1.0	24
58	Glaucoma Considered as an Imbalance Between Production and Clearance of Neurotoxins., 2014, 55, 5351.		23
59	APP23 mice display working memory impairment in the plus-shaped water maze. Neuroscience Letters, 2006, 407, 6-10.	1.0	21
60	Excitatory amino acids and monoaminergic neurotransmitters in cerebrospinal fluid of acute ischemic stroke patients. Neurochemistry International, 2010, 56, 865-870.	1.9	21
61	Progressive Motor Deficit is Mediated by the Denervation of Neuromuscular Junctions and Axonal Degeneration in Transgenic Mice Expressing Mutant (P301S) Tau Protein. Journal of Alzheimer's Disease, 2017, 60, S41-S57.	1.2	21
62	Signal loss due to oligomerization in ELISA analysis of amyloid-beta can be recovered by a novel sample pre-treatment method. MethodsX, 2015, 2, 112-123.	0.7	19
63	Accelerated high-frequency repetitive transcranial magnetic stimulation enhances motor activity in rats. Neuroscience, 2017, 347, 103-110.	1.1	19
64	Sleep architecture changes in the APP23 mouse model manifest at onset of cognitive deficits. Behavioural Brain Research, 2019, 373, 112089.	1.2	18
65	Serum NGAL is Associated with Distinct Plasma Amyloid- \hat{l}^2 Peptides According to the Clinical Diagnosis of Dementia in Down Syndrome. Journal of Alzheimer's Disease, 2015, 45, 733-743.	1.2	17
66	GSA: behavioral, histological, electrophysiological and neurochemical effects. Physiology and Behavior, 2005, 84, 251-264.	1.0	16
67	Comparison of extraction methods for peptidomics analysis of mouse brain tissue. Journal of Neuroscience Methods, 2011, 197, 231-237.	1.3	16
68	Behavioural characterization of AnkyrinG deficient mice, a model for ANK3 related disorders. Behavioural Brain Research, 2017, 328, 218-226.	1.2	16
69	Cerebrospinal fluid and serum MHPG improve Alzheimer's disease versus dementia with Lewy bodies differential diagnosis. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2018, 10, 172-181.	1.2	16
70	Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Frontiers in Molecular Biosciences, 2021, 8, 651215.	1.6	16
71	Glaucoma and the Role of Cerebrospinal Fluid Dynamics. , 2015, 56, 6630.		15
72	Impaired gait pattern as a sensitive tool to assess hypoxic brain damage in a novel mouse model of atherosclerotic plaque rupture. Physiology and Behavior, 2015, 139, 397-402.	1.0	15

#	Article	IF	Citations
73	Neuropeptides in Alzheimer's Disease: From Pathophysiological Mechanisms to Therapeutic Opportunities. Current Alzheimer Research, 2013, 10, 449-468.	0.7	15
74	Evaluation of the APP23-model for Alzheimer's disease in the odour paired-associate test for hippocampus-dependent memory. Behavioural Brain Research, 2008, 190, 147-151.	1.2	14
75	Age-dependent changes in noradrenergic locus coeruleus system in wild-type and APP23 transgenic mice. Neuroscience Letters, 2009, 463, 93-97.	1.0	14
76	Specific Triazine Herbicides Induce Amyloid- $\hat{1}^2$ 42 Production. Journal of Alzheimer's Disease, 2016, 54, 1593-1605.	1.2	14
77	Aging rather than aneuploidy affects monoamine neurotransmitters in brain regions of Down syndrome mouse models. Neurobiology of Disease, 2017, 105, 235-244.	2.1	14
78	Nitric oxide donor molsidomine favors features of atherosclerotic plaque stability and reduces myocardial infarction in mice. Vascular Pharmacology, 2019, 118-119, 106561.	1.0	14
79	The Behavioral and Psychological Symptoms of Dementia in Down Syndrome Scale (BPSD-DS II): Optimization and Further Validation1. Journal of Alzheimer's Disease, 2021, 81, 1505-1527.	1.2	14
80	Age-related cognitive decline in spatial learning and memory of C57BL/6J mice. Behavioural Brain Research, 2022, 418, 113649.	1.2	14
81	Genes Involved in Cerebrospinal Fluid Production as Candidate Genes for Late-Onset Alzheimer's Disease: A Hypothesis. Journal of Neurogenetics, 2011, 25, 195-200.	0.6	13
82	A behavioural study of neuroglobin-overexpressing mice under normoxic and hypoxic conditions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1764-1771.	1.1	13
83	Fast circulation of cerebrospinal fluid: an alternative perspective on the protective role of high intracranial pressure in ocular hypertension. Australasian journal of optometry, The, 2016, 99, 213-218.	0.6	13
84	Monoaminergic Markers Across the Cognitive Spectrum of Lewy Body Disease. Journal of Parkinson's Disease, 2018, 8, 71-84.	1.5	12
85	Pentylenetetrazole-induced Seizure Susceptibility in the Tau58/4 Transgenic Mouse Model of Tauopathy. Neuroscience, 2020, 425, 112-122.	1.1	12
86	5-HT7 receptors in Alzheimer's disease. Neurochemistry International, 2021, 150, 105185.	1.9	12
87	Late age increase in soluble amyloid-beta levels in the APP23 mouse model despite steady-state levels of amyloid-beta-producing proteins. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 105-112.	1.8	11
88	Intracranial pressure and glaucoma: Is there a new therapeutic perspective on the horizon?. Medical Hypotheses, 2018, 118, 98-102.	0.8	11
89	Serum Corticosterone and Insulin Resistance as Early Biomarkers in the hAPP23 Overexpressing Mouse Model of Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 6656.	1.8	11
90	The First Histologic Evidence of a Paravascular Pathway Within the Optic Nerve., 2018, 59, 1717.		10

#	Article	IF	Citations
91	Validation of the APP23 Transgenic Mouse Model of Alzheimer's Disease through Evaluation of Risperidone Treatment on Aggressive Behaviour. Arzneimittelforschung, 2008, 58, 265-268.	0.5	9
92	Aging, microglia and cytoskeletal regulation are key factors in the pathological evolution of the APP23 mouse model for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 395-405.	1.8	9
93	Monoaminergic impairment in Down syndrome with Alzheimer's disease compared to earlyâ€onset Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2018, 10, 99-111.	1.2	9
94	Progressive tau aggregation does not alter functional brain network connectivity in seeded hTau.P301L mice. Neurobiology of Disease, 2020, 143, 105011.	2.1	9
95	The role of low intracranial pressure in the development of glaucoma in patients with Alzheimer's disease. Progress in Retinal and Eye Research, 2014, 39, 107-110.	7.3	8
96	Intracranial pressure fluctuations: a potential risk factor for glaucoma?. Acta Ophthalmologica, 2015, 93, e83-e84.	0.6	8
97	Alzheimer's disease and glaucoma: can glymphatic system dysfunction underlie their comorbidity?. Acta Ophthalmologica, 2017, 95, e244-e245.	0.6	8
98	Adapted Morris Water Maze protocol to prevent interference from confounding motor deficits on cognitive functioning. Somatosensory & Motor Research, 2017, 34, 172-178.	0.4	8
99	Impaired hypoxic tolerance in <scp>APP</scp> 23 mice: a dysregulation of neuroprotective globin levels. FEBS Letters, 2017, 591, 1321-1332.	1.3	7
100	Alzheimer's disease and glaucoma: Lookâ€elike neurodegenerative diseases. Alzheimer's and Dementia, 2019, 15, 600-601.	0.4	7
101	Evaluating the applicability of mouse SINEs as an alternative normalization approach for RT-qPCR in brain tissue of the APP23 model for Alzheimer's disease. Journal of Neuroscience Methods, 2019, 320, 128-137.	1.3	6
102	The validation of Short Interspersed Nuclear Elements (SINEs) as a RT-qPCR normalization strategy in a rodent model for temporal lobe epilepsy. PLoS ONE, 2019, 14, e0210567.	1.1	6
103	Fibromyalgia as a glymphatic overload syndrome. Medical Hypotheses, 2018, 115, 17-18.	0.8	4
104	Do repetitive <scp>V</scp> alsalva maneuvers reduce glymphatic clearance?. Annals of Neurology, 2017, 81, 322-322.	2.8	3
105	Comparison of size distribution and (Pro249-Ser258) epitope exposure in in vitro and in vivo derived Tau fibrils. BMC Molecular and Cell Biology, 2020, 21, 81.	1.0	3
106	A general decline in cerebrospinal fluid flow and optic nerve compartmentation: are these sequential steps leading to toxicity in normalâ€tension glaucoma?. Acta Ophthalmologica, 2016, 94, e242-3.	0.6	2
107	Dilated Virchow-Robin spaces in primary open-angle glaucoma: a biomarker of glymphatic waste clearance dysfunction?. Acta Radiologica Open, 2016, 5, 205846011665363.	0.3	2
108	Evidence for the existence of a communication between the eye and the brain?. Acta Neurochirurgica, 2017, 159, 1413-1414.	0.9	2

#	Article	IF	CITATIONS
109	The two faces of the translaminar pressure difference: the biomechanical one and the biochemical one. Australasian journal of optometry, The, 2017, 100, 102-103.	0.6	2
110	Altered stress hormone levels affect in vivo vascular function in the hAPP23+/- overexpressing mouse model of Alzheimer's disease. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H905-H919.	1.5	2
111	Species, Strain, and Gender Issues in the Development and Validation of Animal Models of Dementia. Neuromethods, 2011, , 53-75.	0.2	2
112	Behavioral Validation in Animal Models of Dementia. Neuromethods, 2011, , 143-154.	0.2	1
113	Psychiatric Disorders in Dementia. , 2014, , 271-324.		1
114	"Hypodense Holes―and the Ocular Glymphatic System: Author Response: "Black Holes―and the Ocular Glymphatic System. , 2017, 58, 1132.		1
115	How does a researcher choose the best rodent model for their Alzheimer's disease drug discovery study?. Expert Opinion on Drug Discovery, 2020, 15, 269-271.	2.5	1
116	Short-Term Pharmacological Induction of Arterial Stiffness and Hypertension with Angiotensin II Does Not Affect Learning and Memory and Cerebral Amyloid Load in Two Murine Models of Alzheimer's Disease. International Journal of Molecular Sciences, 2022, 23, 2738.	1.8	1
117	Animal Models for Brain Research. , 2014, , 3-46.		O
118	A General Decline in Cerebrospinal Fluid Flow. Journal of Neuro-Ophthalmology, 2016, 36, 227-228.	0.4	0
119	Cerebral and cerebellar language organization in a right-handed subject with a left temporal porencephalic cyst: An fMRI study. Journal of Neurolinguistics, 2016, 37, 41-46.	0.5	0
120	Letter to the Editor. Low ICP and normal tension glaucoma: optic nerve damage due to barotraumatic factors, failure of CSF dynamics, or both?. Journal of Neurosurgery, 2018, 129, 1100-1103.	0.9	0
121	Intrathecal cerebrospinal fluid infusion as a potential therapeutic strategy for Alzheimer's disease. Medical Hypotheses, 2019, 122, 57.	0.8	0
122	APP-Based Transgenic Models: The APP23 Model. Neuromethods, 2011, , 399-413.	0.2	0
123	General Introduction to Animal Models of Human Conditions. Neuromethods, 2011, , 3-13.	0.2	0