
Tomoyuki Oki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9450211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	α-Glucosidase Inhibitory Action of Natural Acylated Anthocyanins. 1. Survey of Natural Pigments with Potent Inhibitory Activity. Journal of Agricultural and Food Chemistry, 2001, 49, 1948-1951.	2.4	357
2	The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant Journal, 2006, 49, 91-102.	2.8	274
3	Polymeric Procyanidins as Radical-Scavenging Components in Red-Hulled Rice. Journal of Agricultural and Food Chemistry, 2002, 50, 7524-7529.	2.4	210
4	<i>In Vitro</i> Survey of <i>α</i> -Glucosidase Inhibitory Food Components. Bioscience, Biotechnology and Biochemistry, 1996, 60, 2019-2022.	0.6	190
5	Inhibitory Effect of α-Glucosidase Inhibitors Varies According to Its Origin. Journal of Agricultural and Food Chemistry, 1999, 47, 550-553.	2.4	182
6	α-Glucosidase Inhibitory Action of Natural Acylated Anthocyanins. 2. α-Glucosidase Inhibition by Isolated Acylated Anthocyanins. Journal of Agricultural and Food Chemistry, 2001, 49, 1952-1956.	2.4	170
7	Physiological Functionality of Purple-Fleshed Sweet Potatoes Containing Anthocyanins and Their Utilization in Foods. Japan Agricultural Research Quarterly, 2003, 37, 167-173.	0.1	131
8	Direct Absorption of Acylated Anthocyanin in Purple-Fleshed Sweet Potato into Rats. Journal of Agricultural and Food Chemistry, 2002, 50, 1672-1676.	2.4	127
9	Antioxidative Peptide from Milk Fermented with Lactobacillus delbrueckii subsp. bulgaricus IFO13953 Journal of the Japanese Society for Food Science and Technology, 2001, 48, 44-50.	0.1	100
10	Method Validation by Interlaboratory Studies of Improved Hydrophilic Oxygen Radical Absorbance Capacity Methods for the Determination of Antioxidant Capacities of Antioxidant Solutions and Food Extracts. Analytical Sciences, 2012, 28, 159-165.	0.8	82
11	Effects of Purple Sweet Potato Anthocyanins on Development and Intracellular Redox Status of Bovine Preimplantation Embryos Exposed to Heat Shock. Journal of Reproduction and Development, 2007, 53, 605-614.	0.5	67
12	Functional components in sweetpotato and their genetic improvement. Breeding Science, 2017, 67, 52-61.	0.9	56
13	Characterisation of proanthocyanidins from black soybeans: Isolation and characterisation of proanthocyanidin oligomers from black soybean seed coats. Food Chemistry, 2013, 141, 2507-2512.	4.2	55
14	Changes in Radicalâ€ s cavenging Activity and Components of Mulberry Fruit During Maturation. Journal of Food Science, 2006, 71, C18.	1.5	51
15	Isolation and Identification of Peptidic α-Glucosidase Inhibitors Derived from Sardine Muscle Hydrolyzate. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1999, 54, 259-263.	0.6	49
16	Effects of high ambient temperature and restricted feed intake on urinary and plasma 3-methylhistidine in lactating Holstein cows. Animal Science Journal, 2006, 77, 201-207.	0.6	42
17	Polyphenol Contents and Radical-Scavenging Activity of Extracts from Fruits and Vegetables in Cultivated in Okinawa, Japan. Journal of the Japanese Society for Food Science and Technology, 2005, 52, 462-471.	0.1	36
18	Simple and Rapid Spectrophotometric Method for Selecting Purple-Fleshed Sweet Potato Cultivars with a High Radical-Scavenging Activity. Breeding Science, 2003, 53, 101-107.	0.9	36

Томоуикі Окі

#	Article	IF	CITATIONS
19	Contribution of .BETACarotene to Radical Scavenging Capacity Varies among Orange-fleshed Sweet Potato Cultivars. Food Science and Technology Research, 2006, 12, 156-160.	0.3	35
20	Evaluation of .ALPHAGlucosidase Inhibition by Using an Immobilized Assay System Biological and Pharmaceutical Bulletin, 2000, 23, 1084-1087.	0.6	33
21	Determination of Acylated Anthocyanin in Human Urine after Ingesting a Purple-Fleshed Sweet Potato Beverage with Various Contents of Anthocyanin by LC-ESI-MS/MS. Bioscience, Biotechnology and Biochemistry, 2006, 70, 2540-2543.	0.6	32
22	Hydrophilic antioxidant capacities of vegetables and fruits commonly consumed in Japan and estimated average daily intake of hydrophilic antioxidants from these foods. Journal of Food Composition and Analysis, 2013, 29, 25-31.	1.9	30
23	Extraction Efficiency of Hydrophilic and Lipophilic Antioxidants from Lyophilized Foods Using Pressurized Liquid Extraction and Manual Extraction. Journal of Food Science, 2014, 79, C1665-71.	1.5	30
24	Radical-Scavenging Activities of Soybean Cultivars with Black Seed Coats. Food Science and Technology Research, 2003, 9, 73-75.	0.3	28
25	Antihypertensive effect of alkaline protease hydrolysate of the pearl oyster Pinctada fucata martencii & separation and identification of angiotensin-l converting enzyme inhibitory peptides. Nippon Suisan Gakkaishi, 2003, 69, 975-980.	0.0	25
26	Estimated Average Daily Intake of Antioxidants from Typical Vegetables Consumed in Japan: A Preliminary Study. Bioscience, Biotechnology and Biochemistry, 2010, 74, 2137-2140.	0.6	24
27	Radical Scavenging Activity of Fried Chips made from Purple-Fleshed Sweet Potato Journal of the Japanese Society for Food Science and Technology, 2001, 48, 926-932.	0.1	22
28	Determination of Free and Bound Phenolic Acids, and Evaluation of Antioxidant Activities and Total Polyphenolic Contents in Selected Pearled Barley. Food Science and Technology Research, 2010, 16, 215-224.	0.3	21
29	Evaluation of Antioxidant Activity of Vegetables from Okinawa Prefecture and Determination of Some Antioxidative Compounds. Food Science and Technology Research, 2006, 12, 8-14.	0.3	20
30	Improvement of the Lipophilic-Oxygen Radical Absorbance Capacity (L-ORAC) Method and Single-Laboratory Validation. Bioscience, Biotechnology and Biochemistry, 2013, 77, 857-859.	0.6	20
31	Hypotensive Effect of Anthocyanin-rich Extract from Purple-fleshed Sweet Potato Cultivar "Ayamurasaki" in Spontaneously Hypertensive Rats. Journal of the Japanese Society for Food Science and Technology, 2005, 52, 41-44.	0.1	16
32	Improvement and Interlaboratory Validation of the Lipophilic Oxygen Radical Absorbance Capacity: Determination of Antioxidant Capacities of Lipophilic Antioxidant Solutions and Food Extracts. Analytical Sciences, 2016, 32, 171-175.	0.8	16
33	Single-laboratory validation for the determination of caffeic acid and seven caffeoylquinic acids in sweet potato leaves. Bioscience, Biotechnology and Biochemistry, 2014, 78, 2073-2080.	0.6	14
34	Effect of repeated harvesting on the content of caffeic acid and seven species of caffeoylquinic acids in sweet potato leaves. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1308-1314.	0.6	13
35	Interlaboratory Study of Hydrophilic-Oxygen Radical Absorbance Capacity, a Method for Measuring Antioxidant Capacity. Journal of the Japanese Society for Food Science and Technology, 2010, 57, 525-531.	0.1	12
36	Simultaneous Determination of Major Anthocyanins in Purple Sweet Potato. Journal of the Japanese Society for Food Science and Technology, 2007, 54, 33-38.	0.1	11

Томоуикі Окі

#	Article	IF	CITATIONS
37	Radical-Scavenging Activity of Hot Water Extract from Leaves of Sweet Potato Cultivar "Simon-1" Journal of the Japanese Society for Food Science and Technology, 2002, 49, 683-687.	0.1	10
38	Black Soybean Seed Coat Extract Prevents Hydrogen Peroxide-Mediated Cell Death via Extracellular Signal-Related Kinase Signalling in HepG2 Cells. Journal of Nutritional Science and Vitaminology, 2015, 61, 275-279.	0.2	9
39	1,1-Diphenyl-2-picrylhydrazyl Radical-scavenging Capacity and Oxygen Radical Absorbance Capacity of Sweet Potato Cultivars with Various Flesh Colors. Journal of the Japanese Society for Food Science and Technology, 2009, 56, 655-659.	0.1	8
40	A Modified Method for the Determination of Acylated Anthocyanins in Purple-fleshed Sweet Potato (<i>Ipomoea batatas</i> (L).) Tubers by High-performance Liquid Chromatography with Visible Absorption. Food Science and Technology Research, 2017, 23, 855-862.	0.3	8
41	Variations in Isoflavone, Thiamine, Riboflavin and Tocopherol Content in Soybean Seeds Grown in Japan. Journal of the Japanese Society for Food Science and Technology, 2007, 54, 295-303.	0.1	7
42	Sweet potato polyphenols. , 2019, , 177-222.		7
43	Comparison of Anthocyanins, Proanthocyanidin Oligomers and Antioxidant Capacity between Cowpea and Grain Legumes with Colored Seed Coat. Food Science and Technology Research, 2019, 25, 287-294.	0.3	7
44	4-Dimethylaminocinnamaldehyde (DMAC) Method for Determination of Total Proanthocyanidin Content in Grain Legumes. Journal of the Japanese Society for Food Science and Technology, 2013, 60, 301-309.	0.1	6
45	Identification and evaluation of antioxidants in Japanese parsley. International Journal of Food Sciences and Nutrition, 2016, 67, 431-440.	1.3	6
46	Validation of pH Differential Method for the Determination of Total Anthocyanin Content in Black Rice and Black Soybean with Interlaboratory Comparison. Bunseki Kagaku, 2011, 60, 819-824.	0.1	5
47	Effect of consuming a purple-fleshed sweet potato beverage on health-related biomarkers and safety parameters in Caucasian subjects with elevated levels of blood pressure and liver function biomarkers: a 4-week, open-label, non-comparative trial. Bioscience of Microbiota, Food and Health, 2016, 35, 129-136.	0.8	5
48	Biological Sciences and Analytical Chemistry. Fluorometric determination of angiotensins in human plasma derivatized with 2,3-naphthalenedialdehyde Bunseki Kagaku, 1995, 44, 783-788.	0.1	4
49	Determination of Major Anthocyanins in Processed Foods Made from Purple-Fleshed Sweet Potato. Journal of the Japanese Society for Food Science and Technology, 2010, 57, 128-133.	0.1	4
50	Comparison of High-Performance Liquid Chromatography and pH Differential Method: Correlations for Quantitation of Anthocyanins in Black Pearl Rice and Soybean. Journal of the Japanese Society for Food Science and Technology, 2012, 59, 104-108.	0.1	4
51	Antioxidant Capacities of Plant-Derived Foods Commonly Consumed in Japan. Journal of Nutritional Science and Vitaminology, 2020, 66, 68-74.	0.2	3
52	Effect of Harvest Time on Changes in Hydrophilic Oxygen Radical Absorbance Capacity of Fruits from Different Strawberry Cultivars (<i>Fragaria×ananassa </i> Duch <i>.</i>). Journal of the Japanese Society for Food Science and Technology, 2020, 67, 109-114.	0.1	3
53	Ascorbic Acid Contents of Brassicaceae Sprouts. Journal of the Japanese Society for Food Science and Technology, 2014, 61, 218-222.	0.1	2
54	Changes in Contents of Caffeic Acid and Seven Species of Caffeoylquinic Acids in Sweet Potato Cultivar "Suioh―Leaves During Boiling Treatment. Journal of the Japanese Society for Food Science and Technology, 2015, 62, 470-476.	0.1	2

Томоуикі Окі

#	Article	IF	CITATIONS
55	The Major Source of Antioxidants Intake From Typical Diet Among Rural Farmers in North-eastern Japan in the 1990s. Journal of Epidemiology, 2021, 31, 101-108.	1.1	2
56	Preparation of Glutaraldehyde Cross-linked Complex from Support. Bioscience, Biotechnology and Biochemistry, 1997, 61, 893-895.	0.6	1
57	Determination of Quercetins in Onion Extracted with Pressurized Liquid. Journal of the Japanese Society for Food Science and Technology, 2005, 52, 424-428.	0.1	1
58	Determination of Total Anthocyanin and Proanthocyanidin Contents in Black Soybeans (Glycine max) Tj ETQq0 0 60, 595-600.	0 rgBT /Ov 0.1	verlock 10 T 1
59	Change in Catalytic Property of Trypsin Immobilized on Support Activated with Glutaraldehyde in Lower Protogenic Solvent Food Science and Technology Research, 1999, 5, 13-17.	0.3	0
60	Changes in Anthocyanins, Polyphenols and .BETACarotene in the Manufacture of Colored Sweet Potato Miso. Journal of the Japanese Society for Food Science and Technology, 2008, 55, 69-75.	0.1	0
61	Changes in Anthocyanin, Proanthocyanidin, ^ ^gamma;-Aminobutyric Acid Contents and Antioxidant Capacity of Black Soybean (Glycine max (L.) Merr.) Cultivar ^ ^ldquo;Kurodamaru^ ^rdquo; During the Manufacture of Roasted Beans. Journal of the Japanese Society for Food Science and Technology, 2014. 61. 39-44.	0.1	0
62	Determination of Phytochemical Contents in Black Soybean Cultivars Developed by NARO and Grown in Japan. Journal of the Brewing Society of Japan, 2014, 109, 240-249.	0.1	0
63	Effect of Superheated Steam and Hot Water Spray Treatment on Polyphenol Oxidase Activity in Sweet Potato Leaves. Journal of the Japanese Society for Food Science and Technology, 2016, 63, 86-92.	0.1	0
64	Comparisons of Non-Volatile and Volatile Flavor Compounds in Frozen Concentrated Orange Juice Imported from Several Countries. Journal of the Japanese Society for Food Science and Technology, 2019, 66, 118-126.	0.1	0
65	Oxygen Radical Absorbance Capacity and Tocopherol Content in Pressed Oils Made from Sesame (<i>Sesamum indicum </i> L.) Cultivar "Maruhime―and Rapeseed (<i>Brassica napus </i> L.) Cultivar "Nanaharuka― lournal of the Japanese Society for Food Science and Technology, 2017, 64, 464-470.	0.1	0