
Boxin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9450152/publications.pdf Version: 2024-02-01

Βοχινι Ζηλο

#	Article	IF	CITATIONS
1	Imparting conformational memory for material adhesion. Materials Horizons, 2022, 9, 675-687.	6.4	1
2	Antimicrobial polymeric composites for high-touch surfaces in healthcare applications. Current Opinion in Biomedical Engineering, 2022, 22, 100395.	1.8	14
3	Synthesis and characterization of natural rubberâ€based telechelic oligomers via olefin metathesis. Journal of Applied Polymer Science, 2021, 138, 49899.	1.3	3
4	Durable poly(N-isopropylacrylamide) grafted PDMS micropillared surfaces for temperature-modulated wetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125901.	2.3	4
5	Polymer Binders: Characterization and Development toward Aqueous Electrode Fabrication for Sustainability. Polymers, 2021, 13, 631.	2.0	52
6	Waterâ€based polyurethanes for sustainable advanced manufacture. Canadian Journal of Chemical Engineering, 2021, 99, 1851-1869.	0.9	12
7	Nature-inspired robust hydrochromic film for dual anticounterfeiting. IScience, 2021, 24, 102652.	1.9	8
8	Monolithic polymeric porous superhydrophobic material with pneumatic plastron stabilization for functionally durable drag reduction in blood-contacting biomedical applications. NPG Asia Materials, 2021, 13, .	3.8	18
9	Multifunctional Organohydrogel-Based Ionic Skin for Capacitance and Temperature Sensing toward Intelligent Skin-like Devices. Chemistry of Materials, 2021, 33, 8623-8634.	3.2	49
10	Reduced Pressure Drop in Viscoelastic Polydimethylsiloxane Wall Channels. Langmuir, 2021, , .	1.6	2
11	Photocatalytic activity of CaTiO3 derived from roasting process of bauxite residue. Journal of Cleaner Production, 2020, 244, 118598.	4.6	14
12	Triple non-covalent dynamic interactions enabled a tough and rapid room temperature self-healing elastomer for next-generation soft antennas. Journal of Materials Chemistry A, 2020, 8, 25073-25084.	5.2	32
13	Recyclable antimicrobial sulphonated poly (ether ether ketone) – copper films: Flat vs micro-pillared surfaces. Materials Today Communications, 2020, 25, 101485.	0.9	7
14	Glycerol-Stabilized Algae–Mussel-Inspired Adhesives for Underwater Bonding. Industrial & Engineering Chemistry Research, 2020, 59, 15255-15263.	1.8	13
15	Poly Methacrylic Acid Sodium Salt (PMANa)/Polyurethane (PU) Latex-Polyelectrolyte Colloid Systems Enabling One-Pot Fabrication of Nonperiodic Structured Mechanoresponsive Smart Windows. ACS Applied Materials & Interfaces, 2020, 12, 27607-27613.	4.0	9
16	Synergetic Combination of Interfacial Engineering and Shape-Changing Modulation for Biomimetic Soft Robotic Devices. Langmuir, 2020, 36, 3279-3291.	1.6	8
17	Viscoelastic tribopairs in dry and lubricated sliding friction. Soft Matter, 2020, 16, 7447-7457.	1.2	7
18	Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chemical Society Reviews, 2020, 49, 433-464.	18.7	517

Βοχίν Ζηλο

#	Article	IF	CITATIONS
19	Multifunctional liquid crystal polymer network soft actuators. Journal of Materials Chemistry A, 2020, 8, 3390-3396.	5.2	26
20	Cellulose Nanocrystal and Silver Nanobelt Gel: Cooperative Interactions Enabling Dispersion, Colloidal Gels, and Flexible Electronics. Langmuir, 2019, 35, 15897-15903.	1.6	8
21	A hybrid material that reversibly switches between two stable solid states. Nature Materials, 2019, 18, 874-882.	13.3	49
22	Algae–mussel-inspired hydrogel composite glue for underwater bonding. Materials Horizons, 2019, 6, 285-293.	6.4	102
23	Selectively leaching the iron-removed bauxite residues with phosphoric acid for enrichment of rare earth elements. Separation and Purification Technology, 2019, 227, 115714.	3.9	25
24	Biotemplated synthesis of cellulose nanocrystal@PVP-assisted polydopamine@Ag nanoparticle as conductive composites. Journal of Materials Science: Materials in Electronics, 2019, 30, 12077-12086.	1.1	5
25	Electrically conductive hydrogels for flexible energy storage systems. Progress in Polymer Science, 2019, 88, 220-240.	11.8	260
26	Surface-Segregation-Induced Nanopapillae on FDTS-Blended PDMS Film and Implications in Wettability, Adhesion, and Friction Behaviors. ACS Applied Materials & Interfaces, 2018, 10, 7476-7486.	4.0	6
27	PEDOT:PSS nano-gels for highly electrically conductive silver/epoxy composite adhesives. Journal of Materials Science: Materials in Electronics, 2018, 29, 1837-1846.	1.1	19
28	Simulation-based design of thermally-driven actuators using liquid crystal elastomers. Liquid Crystals, 2018, 45, 1010-1022.	0.9	13
29	Behavior of Water/pMDI Emulsion Adhesive on Bonding Wood Substrates with Varied Surface Properties. Industrial & Engineering Chemistry Research, 2018, 57, 16318-16326.	1.8	11
30	Actuators: Programmable 3D Shape Changes in Liquid Crystal Polymer Networks of Uniaxial Orientation (Adv. Funct. Mater. 37/2018). Advanced Functional Materials, 2018, 28, 1870259.	7.8	3
31	How interface compatibility affects conductivity evolution of silver nanobelts-filled electrically conductive composites during cure and post-treatments. Physical Chemistry Chemical Physics, 2018, 20, 17999-18008.	1.3	0
32	Programmable 3D Shape Changes in Liquid Crystal Polymer Networks of Uniaxial Orientation. Advanced Functional Materials, 2018, 28, 1802809.	7.8	60
33	Dual Colorimetric and Conductometric Responses of Silver-Decorated Polypyrrole Nanowires for Sensing Organic Solvents of Varied Polarities. ACS Applied Materials & Interfaces, 2018, 10, 29227-29232.	4.0	10
34	Droplet freezing and ice adhesion strength measurement on super-cooled hydrophobic surfaces. Journal of Adhesion, 2017, 93, 375-388.	1.8	10
35	Coating cellulose nanocrystals on polypropylene and its film adhesion and mechanical properties. Cellulose, 2017, 24, 1877-1888.	2.4	20
36	Functionally graded dry adhesives based on f ilm-terminated silicone foam. International Journal of Adhesion and Adhesives, 2017, 76, 47-53.	1.4	11

Βοχίν Ζήλο

#	Article	IF	CITATIONS
37	Effects of rare earth oxide additive on surface and tribological properties of polyimide composites. Applied Surface Science, 2017, 416, 536-546.	3.1	33
38	Bacterial Networks on Hydrophobic Micropillars. ACS Nano, 2017, 11, 675-683.	7.3	25
39	Smart biomimetic micro/nanostructures based on liquid crystal elastomers and networks. Soft Matter, 2017, 13, 8006-8022.	1.2	66
40	Underwater Contact Behavior of Alginate and Catechol-Conjugated Alginate Hydrogel Beads. Langmuir, 2017, 33, 8353-8361.	1.6	35
41	Vitrification during cure produces anomalies and path-dependence in electrical resistance of conductive composites. Composites Science and Technology, 2017, 149, 90-99.	3.8	3
42	Graphene-doped polyaniline nanocomposites as electromagnetic wave absorbing materials. Journal of Materials Science: Materials in Electronics, 2017, 28, 10921-10928.	1.1	11
43	Solvent presence and its impact on the lap-shear strength of SDS-decorated graphene hybrid electrically conductive adhesives. International Journal of Adhesion and Adhesives, 2017, 78, 102-110.	1.4	13
44	Thermally Active Liquid Crystal Network Gripper Mimicking the Selfâ€Peeling of Gecko Toe Pads. Advanced Materials, 2017, 29, 1604021.	11.1	145
45	Bio-Based Adhesives and Evaluation for Wood Composites Application. Polymers, 2017, 9, 70.	2.0	157
46	Bio-Inspired Polymeric Structures with Special Wettability and Their Applications: An Overview. Polymers, 2017, 9, 725.	2.0	44
47	Acid treatment of silver flake coatings and its application in the flexible electrical circuits. Journal of Materials Science: Materials in Electronics, 2016, 27, 4363-4371.	1.1	5
48	Development of electrically conductive-superoleophobic micropillars for reducing surface adhesion of oil at low temperatures. Applied Surface Science, 2016, 389, 623-631.	3.1	7
49	Effect of SDS decoration of graphene on the rheological and electrical properties of graphene-filled epoxy/Ag composites. Journal of Materials Science: Materials in Electronics, 2016, 27, 12955-12963.	1.1	8
50	Highly-stable silver nanobelts joined via diffusion-free attachment. Nanotechnology, 2016, 27, 295606.	1.3	4
51	Highly repeatable kinetically-independent synthesis of one- and two-dimensional silver nanostructures by oriented attachment. RSC Advances, 2016, 6, 61641-61649.	1.7	8
52	Durable Microstructured Surfaces: Combining Electrical Conductivity with Superoleophobicity. ACS Applied Materials & Interfaces, 2016, 8, 1795-1804.	4.0	18
53	A transparent silica colloidal crystal/PDMS composite and its application for crack suppression of metallic coatings. Journal of Colloid and Interface Science, 2016, 461, 136-143.	5.0	19
54	Smart Muscleâ€Driven Selfâ€Cleaning of Biomimetic Microstructures from Liquid Crystal Elastomers. Advanced Materials, 2015, 27, 6828-6833.	11.1	86

Βοχίν Ζηλο

#	Article	IF	CITATIONS
55	Morphologically Controlled Bioinspired Dopamineâ€Polypyrrole Nanostructures with Tunable Electrical Properties. Advanced Electronic Materials, 2015, 1, 1500205.	2.6	48
56	Biomimicry: Smart Muscleâ€Driven Selfâ€Cleaning of Biomimetic Microstructures from Liquid Crystal Elastomers (Adv. Mater. 43/2015). Advanced Materials, 2015, 27, 6770-6770.	11.1	1
57	Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: the effect of NPs sintering on the electrical conductivity improvement. Journal of Materials Science: Materials in Electronics, 2015, 26, 590-600.	1.1	50
58	A Facile In Situ Approach to Polypyrrole Functionalization Through Bioinspired Catechols. Advanced Functional Materials, 2015, 25, 1588-1597.	7.8	103
59	Surface modification of polydimethylsiloxane elastomer for stable hydrophilicity, optical transparency and film lubrication. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 267-275.	2.3	30
60	Recent progresses on hybrid micro–nano filler systems for electrically conductive adhesives (ECAs) applications. Journal of Materials Science: Materials in Electronics, 2015, 26, 4730-4745.	1.1	52
61	SDS-stabilized graphene nanosheets for highly electrically conductive adhesives. Carbon, 2015, 91, 188-199.	5.4	41
62	Highly conductive interconnected graphene foam based polymer composite. Carbon, 2015, 95, 653-658.	5.4	68
63	Oleophobicity of Biomimetic Micropatterned Surface and Its Effect on the Adhesion of Frozen Oil. Langmuir, 2015, 31, 9901-9910.	1.6	12
64	Porous silver nanosheets: a novel sensing material for nanoscale and microscale airflow sensors. Nanotechnology, 2015, 26, 445501.	1.3	7
65	Superhydro-oleophobic bio-inspired polydimethylsiloxane micropillared surface via FDTS coating/blending approaches. Applied Surface Science, 2015, 324, 612-620.	3.1	62
66	Formation of silica colloidal crystals on soft hydrophobic vs rigid hydrophilic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 467, 180-187.	2.3	7
67	Thermal analysis of epoxy-based nanocomposites: Have solvent effects been overlooked?. Journal of Thermal Analysis and Calorimetry, 2015, 119, 797-805.	2.0	10
68	How morphology and surface crystal texture affect thermal stability of a metallic nanoparticle: the case of silver nanobelts and pentagonal silver nanowires. Physical Chemistry Chemical Physics, 2015, 17, 315-324.	1.3	33
69	Electrical Conductive Adhesives Enhanced with Highâ€ <scp>A</scp> spectâ€ <scp>R</scp> atio Silver Nanobelts. Macromolecular Materials and Engineering, 2014, 299, 739-747.	1.7	31
70	Biomimetic Microâ€ <scp>P</scp> atterning of Epoxy Coatings for Enhanced Surface Hydrophobicity and Low Friction. Macromolecular Materials and Engineering, 2014, 299, 237-247.	1.7	14
71	In Situ Doped Polyaniline Nanotubes for Applications in Flexible Conductive Coatings. Macromolecular Materials and Engineering, 2014, 299, 966-976.	1.7	8
72	Bioâ€Inspired Dopamine Functionalization of Polypyrrole for Improved Adhesion and Conductivity. Macromolecular Rapid Communications, 2014, 35, 350-354.	2.0	78

Βοχίν Ζήλο

#	Article	IF	CITATIONS
73	Bioinspired Functionally Graded Adhesive Materials: Synergetic Interplay of Top Viscous–Elastic Layers with Base Micropillars. Macromolecules, 2014, 47, 353-364.	2.2	40
74	Bio-inspired polydimethylsiloxane-functionalized silica particles - epoxy bilayer as a robust superhydrophobic surface coating. Surface and Coatings Technology, 2014, 254, 230-237.	2.2	36
75	Dual Responsive Pickering Emulsion Stabilized by Poly[2-(dimethylamino)ethyl methacrylate] Grafted Cellulose Nanocrystals. Biomacromolecules, 2014, 15, 3052-3060.	2.6	275
76	Ferrite-grafted polyaniline nanofibers as electromagnetic shielding materials. Journal of Materials Chemistry C, 2013, 1, 2851.	2.7	102
77	Polyanilineâ€ŧailored electromechanical responses of the silver/epoxy conductive adhesive composites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1448-1455.	2.4	5
78	Poly(AAc- <i>co</i> -MBA) Hydrogel Films: Adhesive and Mechanical Properties in Aqueous Medium. Journal of Physical Chemistry B, 2013, 117, 441-449.	1.2	56
79	Surface and Tribological Behaviors of the Bioinspired Polydopamine Thin Films under Dry and Wet Conditions. Biomacromolecules, 2013, 14, 394-405.	2.6	96
80	Biologically inspired enhancement of pressure-sensitive adhesives using a thin film-terminated fibrillar interface. Soft Matter, 2012, 8, 8281.	1.2	28
81	Room-temperature pressureless bonding with silver nanowire paste: towards organic electronic and heat-sensitive functional devices packaging. Journal of Materials Chemistry, 2012, 22, 12997.	6.7	66
82	Thiocarboxylate functionalization of silver nanoparticles: effect of chain length on the electrical conductivity of nanoparticles and their polymer composites. Journal of Materials Chemistry, 2012, 22, 20048.	6.7	58
83	"Contact―of Nanoscale Stiff Films. Langmuir, 2012, 28, 9562-9572.	1.6	27
84	Teflon hierarchical nanopillars with dry and wet adhesive properties. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 846-851.	2.4	26
85	Biomimetic Modification of Polymeric Surfaces: A Promising Pathway for Tuning of Wetting and Adhesion. Macromolecular Materials and Engineering, 2012, 297, 743-760.	1.7	32
86	The application of digital image techniques to determine the large stress–strain behaviors of soft materials. Polymer Engineering and Science, 2012, 52, 826-834.	1.5	25
87	Reinforcement of Ag nanoparticle paste with nanowires for low temperature pressureless bonding. Journal of Materials Science, 2012, 47, 6801-6811.	1.7	51
88	Silver-polyaniline-epoxy electrical conductive adhesives - a percolation threshold analysis. , 2011, , .		4
89	Conformal Adhesion Enhancement on Biomimetic Microstructured Surfaces. Langmuir, 2011, 27, 7732-7742.	1.6	50
90	Adhesion of Polymers in Paper Products from the Macroscopic to Molecular Level — An Overview. Journal of Adhesion Science and Technology, 2011, 25, 557-579.	1.4	46

Βοχίν Ζήλο

#	Article	IF	CITATIONS
91	Adhesion Properties of Self-Polymerized Dopamine Thin Film. The Open Surface Science Journal, 2011, 3, 115-122.	2.0	61
92	Liquid- to Solid-Like Failure Mechanism of Thin Polymer Films at Micro- and Nanoscales. Macromolecules, 2010, 43, 538-542.	2.2	19
93	Friction at the Liquid/Liquid Interface of Two Immiscible Polymer Films. Langmuir, 2009, 25, 4954-4964.	1.6	30
94	Gecko adhesion pad: a smart surface?. Journal of Physics Condensed Matter, 2009, 21, 464132.	0.7	72
95	Role of Tilted Adhesion Fibrils (Setae) in the Adhesion and Locomotion of Gecko-like Systems. Journal of Physical Chemistry B, 2009, 113, 3615-3621.	1.2	70
96	The Crowding Model as a Tool to Understand and Fabricate Gecko-Inspired Dry Adhesives. Journal of Adhesion, 2009, 85, 512-525.	1.8	18
97	Frictional Adhesion of Patterned Surfaces and Implications for Gecko and Biomimetic Systems. Langmuir, 2009, 25, 7486-7495.	1.6	75
98	Changes in pore morphology and fluid transport in compressed articular cartilage and the implications for joint lubrication. Biomaterials, 2008, 29, 4455-4462.	5.7	44
99	Adhesion and Friction Force Coupling of Gecko Setal Arrays:  Implications for Structured Adhesive Surfaces. Langmuir, 2008, 24, 1517-1524.	1.6	106
100	Peel-Zone Model of Tape Peeling Based on the Gecko Adhesive System. Journal of Adhesion, 2007, 83, 383-401.	1.8	159
101	Transient filamentous network structure of a colloidal suspension excited by stepwise electric fields. Physical Review E, 2007, 75, 011409.	0.8	6
102	Transient surface patterns during adhesion and coalescence of thin liquid films. Soft Matter, 2007, 3, 88-93.	1.2	26
103	Transient Interfacial Patterns and Instabilities Associated with Liquid Film Adhesion and Spreading. Langmuir, 2007, 23, 6126-6135.	1.6	17
104	Transient Surface Patterns and Instabilities at Adhesive Junctions of Viscoelastic Films. Macromolecules, 2007, 40, 8409-8422.	2.2	34
105	Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19320-19325.	3.3	546
106	Simple Approach for Quantifying the Thermodynamic Potential of Polymer–Polymer Adhesion. Journal of Adhesion, 2006, 82, 121-133.	1.8	10
107	Adhesion and detachment mechanisms of sugar surfaces from the solid (glassy) to liquid (viscous) states. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19624-19629.	3.3	16
108	Paper properties affecting pressure-sensitive tape adhesion. Journal of Adhesion Science and Technology, 2004, 18, 1625-1641.	1.4	8

#	Article	IF	CITATIONS
109	New analysis of peeling data from paper. Journal of Materials Science Letters, 2003, 22, 265-266.	0.5	3
110	Peel adhesion to paper—interpreting peel curves. Journal of Adhesion Science and Technology, 2003, 17, 815-830.	1.4	19