Pascal Panizza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9449964/publications.pdf Version: 2024-02-01

DASCAL DANIZZA

#	Article	IF	CITATIONS
1	10.1119/10.0002348.1., 2021,,.		Ο
2	Different scenarios of shrinking surface soap bubbles. American Journal of Physics, 2021, 89, 244-252.	0.7	2
3	Breaking of Emulsions with Chemical Additives: Using Surrogate Fluids to Develop a Novel Theoretical Framework and Its Application to Water-in-Crude Oil Emulsions. ACS Omega, 2021, 6, 27976-27983.	3.5	2
4	Controlling the Emission Properties of Quantum Rods via Multiscale 3D Ordered Organization. Journal of Nanomaterials, 2021, 2021, 1-9.	2.7	0
5	Breakup of confined drops against a micro-obstacle: an analytical model for the drop size distribution. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	4
6	Interfacial bubbles formed by plunging thin liquid films in a pool. Physical Review Fluids, 2017, 2, .	2.5	3
7	Bubble blowing by the numbers. Physics Today, 2016, 69, 78-79.	0.3	5
8	Defects of structure in one-dimensional trains of drops of alternating composition. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	0
9	Generating Soap Bubbles by Blowing on Soap Films. Physical Review Letters, 2016, 116, 077801.	7.8	31
10	Cooperative breakups induced by drop-to-drop interactions in one-dimensional flows of drops against micro-obstacles. Soft Matter, 2015, 11, 2454-2460.	2.7	8
11	A pendant drop method for the production of calibrated double emulsions and emulsion gels. RSC Advances, 2014, 4, 28504-28510.	3.6	19
12	Commensurability-driven structural defects in double emulsions produced with two-step microfluidic techniques. Soft Matter, 2014, 10, 4743-4748.	2.7	4
13	Passive breakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries: experiments and models. Lab on A Chip, 2013, 13, 3022.	6.0	42
14	Microfluidic breakups of confined droplets against a linear obstacle: The importance of the viscosity contrast. Physical Review E, 2012, 86, 036317.	2.1	38
15	Droplet traffic regulated by collisions in microfluidic networks. Soft Matter, 2011, 7, 9453.	2.7	23
16	Millifluidic droplet analyser for microbiology. Lab on A Chip, 2011, 11, 4057.	6.0	114
17	Some recent advances in the design and the use of miniaturized droplet-based continuous process: Applications in chemistry and high-pressure microflows. Lab on A Chip, 2011, 11, 779-787.	6.0	68
18	Combining sol–gel chemistry and millifluidic toward engineering microporous silica ceramic final sizes and shapes: An Integrative Chemistry approach. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1317-1322.	3.6	21

Pascal Panizza

#	Article	IF	CITATIONS
19	Controlled production of hierarchically organized large emulsions and particles using assemblies on line of co-axial flow devices. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 312, 24-31.	4.7	66
20	Droplet Traffic at a Simple Junction at Low Capillary Numbers. Physical Review Letters, 2005, 95, 208304.	7.8	115
21	Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow. Physical Review Letters, 2004, 92, 018305.	7.8	30