
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9449949/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alcohol, oxidative stress and free radical damage. Proceedings of the Nutrition Society, 2006, 65, 278-290.	0.4	565
2	Stimulation of Lipid Peroxidation or 4-Hydroxynonenal Treatment Increases Procollagen α1 (I) Gene Expression in Human Liver Fat-Storing Cells. Biochemical and Biophysical Research Communications, 1993, 194, 1044-1050.	1.0	329
3	The role of lipid peroxidation in liver damage. Chemistry and Physics of Lipids, 1987, 45, 117-142.	1.5	309
4	Oxidative mechanisms in the pathogenesis of alcoholic liver disease. Molecular Aspects of Medicine, 2008, 29, 9-16.	2.7	245
5	Adaptive immunity: an emerging player in the progression of NAFLD. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 81-92.	8.2	227
6	Ethanol-inducible cytochrome P4502E1: Genetic polymorphism, regulation, and possible role in the etiology of alcohol-induced liver disease. Alcohol, 1993, 10, 447-452.	0.8	219
7	Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology, 2014, 59, 886-897.	3.6	205
8	Vitamin E dietary supplementation protects against carbon tetrachloride—induced chronic liver damage and cirrhosis. Hepatology, 1992, 16, 1014-1021.	3.6	203
9	Immune response towards lipid peroxidation products as a predictor of progression of non-alcoholic fatty liver disease to advanced fibrosis. Gut, 2005, 54, 987-993.	6.1	179
10	Detection of circulating antibodies against malondialdehyde-acetaldehyde adducts in patients with alcohol-induced liver disease. Hepatology, 2000, 31, 878-884.	3.6	158
11	On the role of lipid peroxidation in the pathogenesis of liver damage induced by long-standing cholestasis. Free Radical Biology and Medicine, 1996, 20, 351-359.	1.3	155
12	Recent insights on the mechanisms of liver preconditioning. Gastroenterology, 2003, 125, 1480-1491.	0.6	153
13	Role of cytochrome P4502E1 in alcoholic liver disease pathogenesis. Alcohol, 1993, 10, 459-464.	0.8	152
14	Role of ethanol-inducible cytochrome P450 (P450IIE1) in catalysing the free radical activation of aliphatic alcohols. Biochemical Pharmacology, 1991, 41, 1895-1902.	2.0	143
15	When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid. Biochemical Journal, 1999, 340, 143-152.	1.7	142
16	Effect of Ethanol on Cytochrome P450 2E1 (CYP2E1), Lipid Peroxidation, and Serum Protein Adduct Formation in Relation to Liver Pathology Pathogenesis. Experimental and Molecular Pathology, 1993, 58, 61-75.	0.9	141
17	Modulation of experimental alcohol-induced liver disease by cytochrome P450 2E1 inhibitors. Hepatology, 1995, 21, 1610-1617.	3.6	138
18	Lipid peroxidation contributes to immune reactions associated with alcoholic liver disease. Free Radical Biology and Medicine, 2002, 32, 38-45.	1.3	128

#	Article	IF	CITATIONS
19	Studies on fatty liver with isolated hepatocytes. Experimental and Molecular Pathology, 1979, 30, 116-127.	0.9	126
20	Spin trapping of free radical species produced during the microsomal metabolism of ethanol. Chemico-Biological Interactions, 1988, 65, 223-234.	1.7	126
21	Cytochrome P4502E1 inducibility and hydroxyethyl radical formation among alcoholics. Journal of Hepatology, 1998, 28, 564-571.	1.8	123
22	Detection of antibodies against proteins modified by hydroxyethyl free radicals in patients with alcoholic cirrhosis. Gastroenterology, 1995, 108, 201-207.	0.6	114
23	Lipid peroxidation and irreversible damage in the rat hepatocyte model. Biochemical Pharmacology, 1992, 43, 2111-2115.	2.0	113
24	Review article: role of oxidative stress in the progression of non-alcoholic steatosis. Alimentary Pharmacology and Therapeutics, 2005, 22, 71-73.	1.9	113
25	Cytochrome P4502E1 hydroxyethyl radical adducts as the major antigen in autoantibody formation among alcoholics. Gastroenterology, 1996, 111, 206-216.	0.6	112
26	Activation of chloroform and related trihalomethanes to free radical intermediates in isolated hepatocytes and in the rat in vivo as detected by the ESR-spin trapping technique. Chemico-Biological Interactions, 1985, 55, 303-316.	1.7	104
27	Free radical mechanisms in immune reactions associated with alcoholic liver disease. Free Radical Biology and Medicine, 2002, 32, 110-114.	1.3	104
28	Moderate alcohol consumption increases oxidative stress in patients with chronic hepatitis C. Hepatology, 2003, 38, 42-49.	3.6	103
29	Interplay between oxidative stress and hepatic steatosis in the progression of chronic hepatitis C. Journal of Hepatology, 2008, 48, 399-406.	1.8	97
30	Liver/kidney microsomal antibody type 1 targets CYP2D6 on hepatocyte plasma membrane. Gut, 2000, 46, 553-561.	6.1	96
31	Effects of N-acetylcysteine on ethanol-induced hepatotoxicity in rats fed via total enteral nutrition. Free Radical Biology and Medicine, 2005, 39, 619-630.	1.3	96
32	Signal pathway involved in the development of hypoxic preconditioning in rat hepatocytes. Hepatology, 2001, 33, 131-139.	3.6	95
33	Hepatitis C virus-related chronic liver disease with autoantibodies to liver-kidney microsomes (LKM). Journal of Hepatology, 1991, 13, 128-131.	1.8	94
34	Specificity of autoantibodies against oxidized LDL as an additional marker for atherosclerotic risk. Coronary Artery Disease, 1993, 4, 1119-1122.	0.3	93
35	Interplay between oxidative stress and immunity in the progression of alcohol-mediated liver injury. Trends in Molecular Medicine, 2008, 14, 63-71.	3.5	89
36	Oxidative stress as a trigger for cellular immune responses in patients with alcoholic liver disease. Hepatology, 2004, 39, 197-203.	3.6	85

#	Article	IF	CITATIONS
37	Endogenous annexin A1 is a novel protective determinant in nonalcoholic steatohepatitis in mice. Hepatology, 2014, 60, 531-544.	3.6	85
38	N-Acetylcysteine Attenuates Progression of Liver Pathology in a Rat Model of Nonalcoholic Steatohepatitis3. Journal of Nutrition, 2008, 138, 1872-1879.	1.3	84
39	Paracetamol-stimulated lipid peroxidation in isolated rat and mouse hepatocytes. Chemico-Biological Interactions, 1983, 47, 249-263.	1.7	83
40	Plasma membrane hydroxyethyl radical adducts cause antibody-dependent cytotoxicity in rat hepatocytes exposed to alcohol. Gastroenterology, 1997, 113, 265-276.	0.6	83
41	B2-Lymphocyte responses to oxidative stress-derived antigens contribute to the evolution of nonalcoholic fatty liver disease (NAFLD). Free Radical Biology and Medicine, 2018, 124, 249-259.	1.3	81
42	Alterations of Cell Volume Regulation in the Development of Hepatocyte Necrosis. Experimental Cell Research, 1999, 248, 280-293.	1.2	79
43	Oxidative stress parameters in paediatric non-alcoholic fatty liver disease. International Journal of Molecular Medicine, 2010, 26, 471-6.	1.8	78
44	Thiyl radicals - formation during peroxidase-catalyzed metabolism of acetaminophen in the presence of thiols. Biochemical and Biophysical Research Communications, 1984, 125, 109-115.	1.0	72
45	Protective Effect of Dehydroepiandrosterone Against Copper-Induced Lipid Peroxidation in the Rat. Free Radical Biology and Medicine, 1997, 22, 1289-1294.	1.3	70
46	GAS6 Inhibits Granulocyte Adhesion to Endothelial Cells. Blood, 1998, 91, 2334-2340.	0.6	70
47	Adenosine A2areceptor-mediated, normoxic induction of HIF-1 through PKC and PI-3K-dependent pathways in macrophages. Journal of Leukocyte Biology, 2007, 82, 392-402.	1.5	69
48	Scavenging effect of silipide, a new silybin-phospholipid complex, on ethanol-derived free radicals. Biochemical Pharmacology, 1995, 50, 1313-1316.	2.0	68
49	Hydroxyethyl radicals in ethanol hepatotoxicity. Frontiers in Bioscience - Landmark, 1999, 4, d533.	3.0	68
50	Spin trapping of free radical products of CCI4 activation using pulse radiolysis and high energy radiation procedures. FEBS Letters, 1980, 122, 303-306.	1.3	67
51	Mitochondrial damage and its role in causing hepatocyte injury during stimulation of lipid peroxidation by iron nitriloacetate. Archives of Biochemistry and Biophysics, 1992, 297, 110-118.	1.4	66
52	Immunological evidence for increased oxidative stress in diabetic rats. Diabetologia, 1998, 41, 265-270.	2.9	66
53	Autoantibodies against Cytochromes P-4502E1 and P-4503A in Alcoholics. Molecular Pharmacology, 1999, 55, 223-233.	1.0	66
54	Hypoxiaâ€inducible factor 2α drives nonalcoholic fatty liver progression by triggering hepatocyte release of histidineâ€rich glycoprotein. Hepatology, 2018, 67, 2196-2214.	3.6	66

#	Article	IF	CITATIONS
55	A novel autoantigen to differentiate limited cutaneous systemic sclerosis from diffuse cutaneous systemic sclerosis: The interferon-inducible gene IFI16. Arthritis and Rheumatism, 2006, 54, 3939-3944.	6.7	64
56	Stimulation of lipid peroxidation increases the intracellular calcium content of isolated hepatocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1091, 310-316.	1.9	63
57	Bias in macrophage activation pattern influences non-alcoholic steatohepatitis (NASH) in mice. Clinical Science, 2012, 122, 545-554.	1.8	63
58	Free Radical Metabolism of Alcohols by Rat Liver Microsomes. Free Radical Research Communications, 1987, 3, 243-249.	1.8	61
59	Genetic and epigenetic factors in autoimmune reactions toward cytochrome P4502E1 in alcoholic liver disease. Hepatology, 2003, 37, 410-419.	3.6	61
60	Role of phosphatidylinositol 3-kinase in the development of hepatocyte preconditioning. Gastroenterology, 2004, 127, 914-923.	0.6	61
61	NF-κB1 deficiency stimulates the progression of non-alcoholic steatohepatitis (NASH) in mice by promoting NKT-cell-mediated responses. Clinical Science, 2013, 124, 279-287.	1.8	61
62	Ischemic preconditioning reduces Na+ accumulation and cell killing in isolated rat hepatocytes exposed to hypoxia. Hepatology, 2000, 31, 166-172.	3.6	60
63	CX3CR1-expressing inflammatory dendritic cells contribute to the progression of steatohepatitis. Clinical Science, 2015, 129, 797-808.	1.8	60
64	Alteration of Na+ homeostasis as a critical step in the development of irreversible hepatocyte injury after adenosine triphosphate depletion. Hepatology, 1995, 21, 1089-1098.	3.6	59
65	Cytokine and Chemokine Expression Associated with Steatohepatitis and Hepatocyte Proliferation in Rats Fed Ethanol via Total Enteral Nutrition. Experimental Biology and Medicine, 2008, 233, 344-355.	1.1	59
66	Lack of CC chemokine ligand 2 differentially affects inflammation and fibrosis according to the genetic background in a murine model of steatohepatitis. Clinical Science, 2012, 123, 459-471.	1.8	59
67	Glycine protects against hepatocyte killing by KCN or hypoxia by preventing intracellular Na+ overload in the rat. Hepatology, 1997, 26, 107-112.	3.6	58
68	Studies on the Antioxidant and Free Radical Scavenging Properties of Idb 1016 A New Flavanolignan Complex. Free Radical Research Communications, 1990, 11, 109-115.	1.8	57
69	Enzyme-Specific Transport of Rat Liver Cytochrome P450 to the Golgi Apparatus. Archives of Biochemistry and Biophysics, 1996, 333, 459-465.	1.4	52
70	Immune mechanisms in alcoholic liver disease. Genes and Nutrition, 2010, 5, 141-147.	1.2	51
71	Molecular mechanisms of liver preconditioning. World Journal of Gastroenterology, 2010, 16, 6058.	1.4	51
72	Studies on fatty liver with isolated hepatocytes. Experimental and Molecular Pathology, 1977, 27, 339-352.	0.9	50

#	Article	IF	CITATIONS
73	When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid. Biochemical Journal, 1999, 340, 143.	1.7	50
74	Valine-alanine manganese superoxide dismutase polymorphism is not associated with alcohol-induced oxidative stress or liver fibrosis. Hepatology, 2002, 36, 1355-1360.	3.6	50
75	The metabolism of halothane by hepatocytes: A comparison between free radical spin trapping and lipid peroxidation in relation to cell damage. Chemico-Biological Interactions, 1983, 46, 353-368.	1.7	49
76	Microvesicles released from fat-laden cells promote activation of hepatocellular NLRP3 inflammasome: A pro-inflammatory link between lipotoxicity and non-alcoholic steatohepatitis. PLoS ONE, 2017, 12, e0172575.	1.1	49
77	In vivo andin vitro evidence concerning the role of lipid peroxidation in the mechanism of hepatocyte death due to carbon tetrachloride. Cell Biochemistry and Function, 1991, 9, 111-118.	1.4	48
78	Fat-laden macrophages modulate lobular inflammation in nonalcoholic steatohepatitis (NASH). Experimental and Molecular Pathology, 2015, 99, 155-162.	0.9	46
79	4-Hydroxynonenal Triggers Ca2+Influx in Isolated Rat Hepatocytes. Biochemical and Biophysical Research Communications, 1996, 218, 772-776.	1.0	45
80	Ca2+-dependent and independent mitochondrial damage in hepatocellular injury. Cell Calcium, 1991, 12, 335-341.	1.1	44
81	Radiolysis of tetrachloromethane. Journal of the Chemical Society Faraday Transactions I, 1982, 78, 2205.	1.0	43
82	Adenosineâ€dependent activation of hypoxiaâ€inducible factorâ€1 induces late preconditioning in liver cells. Hepatology, 2008, 48, 230-239.	3.6	43
83	Adenosine A2a receptor stimulation prevents hepatocyte lipotoxicity and non-alcoholic steatohepatitis (NASH) in rats. Clinical Science, 2012, 123, 323-332.	1.8	41
84	Sodium-Mediated Cell Swelling Is Associated with Irreversible Damage in Isolated Hepatocytes Exposed to Hypoxia or Mitochondrial Toxins. Biochemical and Biophysical Research Communications, 1995, 206, 180-185.	1.0	40
85	Pharmacological postconditioning protects against hepatic ischemia/reperfusion injury. Liver Transplantation, 2011, 17, 474-482.	1.3	40
86	Detection of a free radical intermediate from divicine of vicia faba. Biochemical Pharmacology, 1984, 33, 1701-1704.	2.0	39
87	Mechanisms responsible for carbon tetrachloride-induced perturbation of mitochondrial calcium homeostasis. FEBS Letters, 1985, 192, 184-188.	1.3	39
88	Spin trapping of free radical intermediates produced during the metabolism of isoniazid and iproniazid in isolated hepatocytes. Biochemical Pharmacology, 1987, 36, 2913-2920.	2.0	39
89	Immune responses against oxidative stress-derived antigens are associated with increased circulating tumor necrosis factor-α in heavy drinkers. Free Radical Biology and Medicine, 2008, 45, 306-311.	1.3	39
90	Role of Adaptive Immunity in Alcoholic Liver Disease. International Journal of Hepatology, 2012, 2012, 1-7.	0.4	39

#	Article	IF	CITATIONS
91	Inhibition of Cu2+-Induced LDL Oxidation by Nitric Oxide: A Study Using Donors with Different Half-Time of NO Release. Biochemical and Biophysical Research Communications, 1996, 220, 306-309.	1.0	38
92	Mechanisms of hepatocyte protection against hypoxic injury by atrial natriuretic peptide. Hepatology, 2003, 37, 277-285.	3.6	38
93	Signal pathway responsible for hepatocyte preconditioning by nitric oxide. Free Radical Biology and Medicine, 2003, 34, 1047-1055.	1.3	38
94	Antiphospholipid antibodies associated with alcoholic liver disease specifically recognise oxidised phospholipids. Gut, 2001, 49, 852-859.	6.1	37
95	The role of immune mechanisms in alcoholic and nonalcoholic steatohepatitis: a 2015 update. Expert Review of Gastroenterology and Hepatology, 2016, 10, 243-253.	1.4	37
96	New concepts in the pathogenesis of alcoholic liver disease. Expert Review of Gastroenterology and Hepatology, 2008, 2, 749-759.	1.4	36
97	Alcoholic Liver Disease in Rats Fed Ethanol as Part of Oral or Intragastric Low-Carbohydrate Liquid Diets. Experimental Biology and Medicine, 2004, 229, 351-360.	1.1	35
98	Free radical activation of monomethyl and dimethyl hydrazines in isolated hepatocytes and liver microsomes. Free Radical Biology and Medicine, 1989, 6, 3-8.	1.3	34
99	DISTRIBUTION OF LIPID-SOLUBLE ANTIOXIDANTS IN LIPOPROTEINS FROM HEALTHY SUBJECTS. I. CORRELATION WITH PLASMA ANTIOXIDANT LEVELS AND COMPOSITION OF LIPOPROTEINS. Pharmacological Research, 2000, 41, 53-63.	3.1	34
100	Effects of carbon tetrachloride on calcium homeostasis. Biochemical Pharmacology, 1989, 38, 2719-2725.	2.0	33
101	Toxicity of 1,2-dibromoethane in isolated hepatocytes: Role of lipid peroxidation. Chemico-Biological Interactions, 1984, 50, 255-265.	1.7	32
102	Effect of spin traps in isolated rat hepatocytes and liver microsomes. Biochemical Pharmacology, 1986, 35, 3955-3960.	2.0	32
103	Effects of long-term ethanol administration in a rat total enteral nutrition model of alcoholic liver disease. American Journal of Physiology - Renal Physiology, 2011, 300, G109-G119.	1.6	32
104	Influence of lipid peroxidation on lipoprotein secretion by isolated hepatocytes. Lipids, 1981, 16, 823-829.	0.7	30
105	Preconditioning-induced cytoprotection in hepatocytes requires Ca2+-dependent exocytosis of lysosomes. Journal of Cell Science, 2004, 117, 1065-1077.	1.2	30
106	Oxidative stress in the development of human ischemic hepatitis during circulatory shock. Free Radical Biology and Medicine, 1994, 17, 225-233.	1.3	29
107	Hydroxyethyl radicals in ethanol hepatotoxicity. Frontiers in Bioscience - Landmark, 1999, 4, d533-540.	3.0	29
108	CYP2E1 autoantibodies in liver diseases. Redox Biology, 2014, 3, 72-78.	3.9	29

#	Article	IF	CITATIONS
109	Metabolic activation of 1,2-dibromoethane to a free radical intermediate by rat liver microsomes and isolated hepatocytes. FEBS Letters, 1983, 160, 191-194.	1.3	28
110	Alterations of Na+ homeostasis in hepatocyte reoxygenation injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1500, 297-305.	1.8	28
111	Anti-phospholipid antibodies associated with alcoholic liver disease target oxidized phosphatidylserine on apoptotic cell plasma membranes. Journal of Hepatology, 2006, 44, 183-189.	1.8	28
112	Combination of Oxidative Stress and Steatosis Is a Risk Factor for Fibrosis in Alcohol-Drinking Patients With Chronic Hepatitis C. American Journal of Gastroenterology, 2008, 103, 147-153.	0.2	28
113	Carbon tetrachloride-induced inhibition of hepatocyte lipoprotein secretion: Functional impairment of Colgi apparatus in the early phases of such injury. Life Sciences, 1985, 36, 533-539.	2.0	27
114	Carbon tetrachloride-induced inhibition of protein kinase C in isolated rat hepatocytes. Biochemical and Biophysical Research Communications, 1988, 153, 591-597.	1.0	26
115	Evidence for a Sodium-Dependent Calcium Influx in Isolated Rat Hepatocytes Undergoing ATP Depletion. Biochemical and Biophysical Research Communications, 1994, 202, 360-366.	1.0	26
116	Negative regulation of diacylglycerol kinase \hat{I}_{s} mediates adenosine-dependent hepatocyte preconditioning. Cell Death and Differentiation, 2010, 17, 1059-1068.	5.0	26
117	CX3CR1 Mediates the Development of Monocyte-Derived Dendritic Cells during Hepatic Inflammation. Cells, 2019, 8, 1099.	1.8	26
118	Oncostatin M, A Profibrogenic Mediator Overexpressed in Non-Alcoholic Fatty Liver Disease, Stimulates Migration of Hepatic Myofibroblasts. Cells, 2020, 9, 28.	1.8	26
119	Detection of Free Radical Intermediates in the Oxidative Metabolism of Carcinogenic Hydrazine Derivatives. Toxicologic Pathology, 1987, 15, 178-183.	0.9	25
120	Cu(I) Availability Paradoxically Antagonizes Antioxidant Consumption and Lipid Peroxidation during the Initiation Phase of Copper-Induced LDL Oxidation. Biochemical and Biophysical Research Communications, 1998, 253, 235-240.	1.0	25
121	Antibodies against advanced glycation end product N ? -(carboxymethyl)lysine in healthy controls and diabetic patients. Diabetologia, 2000, 43, 1385-1388.	2.9	25
122	Circulating antibodies recognizing malondialdehyde-modified proteins in healthy subjects. Free Radical Biology and Medicine, 2001, 30, 277-286.	1.3	25
123	Understanding and Treating Patients With Alcoholic Cirrhosis: An Update. Alcoholism: Clinical and Experimental Research, 2009, 33, 1136-1144.	1.4	25
124	Inhibition of the high affinity Ca2+-ATPase activity in rat liver plasma membranes following carbon tetrachloride intoxication. Chemico-Biological Interactions, 1990, 73, 103-119.	1.7	24
125	The dynamic reduction of Cu(II) to Cu(I) and not Cu(I) availability is a sufficient trigger for low density lipoprotein oxidation. Lipids and Lipid Metabolism, 1997, 1347, 191-198.	2.6	24
126	Increased 4-hydroxynonenal protein adducts in male GSTA4–4/PPAR-α double knockout mice enhance injury during early stages of alcoholic liver disease. American Journal of Physiology - Renal Physiology, 2015, 308, G403-G415.	1.6	24

#	Article	IF	CITATIONS
127	[11] Spin trapping of alcohol-derived radicals in microsomes and reconstituted systems by electron spin resonance. Methods in Enzymology, 1994, 233, 117-127.	0.4	23
128	SerpinB3 Promotes Pro-fibrogenic Responses in Activated Hepatic Stellate Cells. Scientific Reports, 2017, 7, 3420.	1.6	23
129	Valine-alanine manganese superoxide dismutase polymorphism is not associated with alcohol-induced oxidative stress or liver fibrosis. Hepatology, 2002, 36, 1355-1360.	3.6	23
130	Different mechanisms are progressively recruited to promote Cu(II) reduction by isolated human low-density lipoprotein undergoing oxidation. Free Radical Biology and Medicine, 1998, 25, 519-528.	1.3	22
131	Purinergic P2Y2 receptors promote hepatocyte resistance to hypoxia. Journal of Hepatology, 2006, 45, 236-245.	1.8	22
132	SerpinB3 Differently Up-Regulates Hypoxia Inducible Factors -1α and -2α in Hepatocellular Carcinoma: Mechanisms Revealing Novel Potential Therapeutic Targets. Cancers, 2019, 11, 1933.	1.7	22
133	INTRACELLULAR Na+ ACCUMULATION AND HEPATOCYTE INJURY DURING COLD STORAGE. Transplantation, 1999, 68, 294-297.	0.5	22
134	Role of Na+/Ca2+Exchanger in Preventing Na+Overload and Hepatocyte Injury: Opposite Effects of Extracellular and Intracellular Ca2+Chelation. Biochemical and Biophysical Research Communications, 1997, 232, 107-110.	1.0	21
135	Variable activation of phosphoinositide 3-kinase influences the response of liver grafts to ischemic preconditioning. Journal of Hepatology, 2009, 50, 937-947.	1.8	20
136	Electron Spin Resonance Studies on Isolated Hepatocytes Treated with Ferrous Or Ferric Iron. Free Radical Research Communications, 1987, 3, 251-255.	1.8	19
137	Stimulation of p38 MAP kinase reduces acidosis and Na+overload in preconditioned hepatocytes. FEBS Letters, 2001, 491, 180-183.	1.3	19
138	Heterozygous Â-globin gene mutations as a risk factor for iron accumulation and liver fibrosis in chronic hepatitis C. Gut, 2007, 56, 693-698.	6.1	19
139	Phlebotomy improves histology in chronic hepatitis C males with mild iron overload. World Journal of Gastroenterology, 2010, 16, 596.	1.4	19
140	Detection of Cytochrome P4503A (CYP3A) in Human Hepatic Stellate Cells. Biochemical and Biophysical Research Communications, 1997, 238, 420-424.	1.0	18
141	A case–control histological study on the effects of phlebotomy in patients with chronic hepatitis C. European Journal of Gastroenterology and Hepatology, 2011, 23, 1178-1184.	0.8	18
142	Biochemical evidence for chemical and/or topographic differences in the lipoperoxidative processes induced by CCl4 and iron. Chemico-Biological Interactions, 1983, 43, 253-261.	1.7	17
143	The Operation of Na+/Ca2+ Exchanger Prevents Intracellular Ca2+ Overload and Hepatocyte Killing Following Iron-Induced Lipid Peroxidation. Biochemical and Biophysical Research Communications, 1995, 208, 813-818.	1.0	17
144	Use of Molecular Simulation for Mapping Conformational CYP2E1 Epitopes. Journal of Biological Chemistry, 2004, 279, 50949-50955.	1.6	17

#	Article	IF	CITATIONS
145	Detection of auto-antibodies against cytochrome P4502E1 (CYP2E1) in chronic hepatitis C. Journal of Hepatology, 2007, 46, 605-612.	1.8	17
146	Lack of sexual dimorphism in alcohol-induced liver damage (ALD) in rats treated chronically with ethanol-containing low carbohydrate diets: The role of ethanol metabolism and endotoxin. Life Sciences, 2004, 75, 469-483.	2.0	16
147	PI3K-dependent lysosome exocytosis in nitric oxide-preconditioned hepatocytes. Free Radical Biology and Medicine, 2006, 40, 1738-1748.	1.3	16
148	Breaking self-tolerance toward cytochrome P4502E1 (CYP2E1) in chronic hepatitis C: Possible role for molecular mimicry. Journal of Hepatology, 2010, 53, 431-438.	1.8	16
149	Free Radical Intermediates under Hypoxic Conditions in the Metabolism of Halogenated Carcinogens. Toxicologic Pathology, 1984, 12, 240-246.	0.9	15
150	The effect of the administration of cobaltic protoporphyrin IX on drug metabolism, carbon tetrachloride activation and lipid peroxidation in rat liver microsomes. Chemico-Biological Interactions, 1984, 50, 143-151.	1.7	15
151	Endotoxinemia contributes to steatosis, insulin resistance and atherosclerosis in chronic hepatitis C: the role of pro-inflammatory cytokines and oxidative stress. Infection, 2018, 46, 793-799.	2.3	15
152	In vitro evidence for CCl4 metabolites covalently bound to lipoprotein micelles. FEBS Letters, 1983, 160, 187-190.	1.3	14
153	Beta-alanine protection against hypoxic liver injury in the rat. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1587, 83-91.	1.8	14
154	Circulating Autoantibodies Recognizing Peroxidase-Oxidized Low Density Lipoprotein. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 134-140.	1.1	14
155	Is there a role for adaptive immunity in nonalcoholic steatohepatitis?. World Journal of Hepatology, 2015, 7, 1725.	0.8	14
156	Studies on lipid peroxidation using whole liver cells: Influence of damaged cells on the prooxidant effect of ADP-Fe3+ and CCl4. Experientia, 1981, 37, 396-397.	1.2	13
157	Detection of free radical intermediates during isoniazid and iproniazid metabolism by isolated rat hepatocytes. Biochemical Pharmacology, 1985, 34, 381-382.	2.0	13
158	Suitability of chemical in vitro models to investigate LDL oxidation: study with different initiating conditions in native and α-tocopherol-supplemented LDL. Clinical Chemistry, 1997, 43, 1436-1441.	1.5	13
159	Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol. Hepatology, 1996, 23, 155-163.	3.6	13
160	Hepatocyte-Specific Deletion of HIF2α Prevents NASH-Related Liver Carcinogenesis by Decreasing Cancer Cell Proliferation. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 459-482.	2.3	13
161	Studies on fatty liver with isolated hepatocytes. Experimental and Molecular Pathology, 1984, 41, 191-201.	0.9	12
162	Ethanol potentiates hypoxic liver injury: role of hepatocyte Na+ overload. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1502, 508-514.	1.8	12

#	Article	IF	CITATIONS
163	Role of p38 map kinase in glycine-induced hepatocyte resistance to hypoxic injury. Journal of Hepatology, 2007, 46, 692-699.	1.8	12
164	Oncostatin <scp>M</scp> is overexpressed in <scp>NASH</scp> â€related hepatocellular carcinoma and promotes cancer cell invasiveness and angiogenesis. Journal of Pathology, 2022, 257, 82-95.	2.1	12
165	Osteopontin: a new player in regulating hepatic ductular reaction and hepatic progenitor cell responses during chronic liver injury. Gut, 2014, 63, 1693-1694.	6.1	11
166	Antibodies against oxidized phospholipids in laboratory tests exploring lupus anti-coagulant activity. Clinical and Experimental Immunology, 2007, 149, 63-69.	1.1	10
167	Serum Autoantibodies Against Cytochrome P450 2E1 (CYP2E1) Predict Severity of Necroinflammation of Recurrent Hepatitis C. American Journal of Transplantation, 2009, 9, 601-609.	2.6	10
168	CX3CR1 modulates the anti-inflammatory activity of hepatic dendritic cells in response to acute liver injury. Clinical Science, 2017, 131, 2289-2301.	1.8	10
169	Annexin A1 treatment prevents the evolution to fibrosis of experimental nonalcoholic steatohepatitis. Clinical Science, 2022, 136, 643-656.	1.8	10
170	SerpinB3 as a Pro-Inflammatory Mediator in the Progression of Experimental Non-Alcoholic Fatty Liver Disease. Frontiers in Immunology, 0, 13, .	2.2	9
171	Possible Role of Free Radical Intermediates in Hepatotoxicity of Hydrazine Derivatives. Toxicology and Industrial Health, 1993, 9, 529-537.	0.6	8
172	Alterations of hepatocyte Ca2+ homeostasis by triethylated lead (Et3Pb+): are they correlated with cytotoxicity?. Chemico-Biological Interactions, 1994, 90, 59-72.	1.7	8
173	CYTOCHROME P4502E1, HYDROXYETHYL FREE RADICALS, AND IMMUNE REACTIONS ASSOCIATED WITH ALCOHOLIC LIVER DISEASE. Alcoholism: Clinical and Experimental Research, 1998, 22, 740-742.	1.4	8
174	Liver dendritic cells and NAFLD evolution: A remaining open issue. Journal of Hepatology, 2017, 66, 1120-1122.	1.8	8
175	In vivo potentiation of 1,2-dibromoethane hepatotoxicity by ethanol through inactivation of glutathione-s-transferase. Chemico-Biological Interactions, 1996, 99, 277-288.	1.7	7
176	Modulation of Oxidative Stress by Alcohol. Alcoholism: Clinical and Experimental Research, 2005, 29, 1060-1065.	1.4	5
177	Oxidative Stress in Alcoholic Liver Disease. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 215-239.	0.4	5
178	Activation of alkylhydrazines to free radical intermediates by ethanol-inducible cytochrome P-4502E1 (CYP2E1). Biochimica Et Biophysica Acta - General Subjects, 1995, 1243, 414-420.	1.1	4
179	Seek and Hide Phosphatidylserine: A New Approach to Prevent Hepatic Ischemia/Reperfusion Injury. Gastroenterology, 2007, 133, 713-716.	0.6	4
180	Non-positive autoimmune responses against CYP2E1 in refrigeration mechanics exposed to halogenated hydrocarbons. Science of the Total Environment, 2007, 383, 90-97.	3.9	4

#	Article	IF	CITATIONS
181	The paradox role of cytotoxic T-lymphocytes in NAFLD-associated hepatocellular carcinoma. Hepatobiliary Surgery and Nutrition, 2021, 10, 705-707.	0.7	4
182	ROLE OF CYTOCHROME P450 ENZYMES IN ALCOHOL LIVER DISEASE PATHOGENESIS. Alcoholism: Clinical and Experimental Research, 1998, 22, 739-740.	1.4	3
183	Alteration of Na+ homeostasis as a critical step in the development of irreversible hepatocyte injury after adenosine triphosphate depletion*1. Hepatology, 1995, 21, 1089-1098.	3.6	2
184	Conformational anti-cytochrome P4502E1 (CYP2E1) auto-antibodies contribute to necro-inflammatory in chronic hepatitis C. Journal of Viral Hepatitis, 2010, 17, 685-690.	1.0	2
185	Targeting toll-like receptor 7/8 improves host anti-infective response in alcoholic cirrhosis. Gut, 2018, 67, 1749-1750.	6.1	1
186	Anti-oxidised-phospholipid antibodies do not correlate with specific anti-phospholipid syndrome classes, but with disease duration. Thrombosis and Haemostasis, 2014, 111, 378-380.	1.8	0
187	Lipid Peroxidation and Bioactivation of Halogenated Hydrocarbons in Rat Liver Mitochondria During Experimental Siderosis. , 1988, , 143-151.		0
188	Lipid Peroxidation and Haloalkylation in CCl4-Induced Liver Fatty Degeneration and Necrosis. , 1988, 49, 807-810.		0
189	Carbon Tetrachloride-Induced Oxidative Stress at the Level of Liver Golgi Apparatus: Effect on Lipoprotein Secretion. , 1990, , 183-191.		0
190	CHANGES IN LIVER PLASMA MEMBRANE PERMEABILITY TO CALCIUM INDUCED BY THE STIMULATION OF LIPID PEROXIDATION. , 1991, , 471-475.		0
191	GAS6 Inhibits Granulocyte Adhesion to Endothelial Cells. Blood, 1998, 91, 2334-2340.	0.6	0
192	Oxidative stress in nonalcoholic fatty liver disease: a reappraisal of the role in supporting inflammatory mechanisms. , 2022, 2022, R57-R68.		0