Liang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9449815/publications.pdf

Version: 2024-02-01

		471371	345118
58	1,743	17	36
papers	citations	h-index	g-index
66	66	66	3442
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Extracellular Recording. , 2022, , 57-70.		O
2	Recording Using Tetrodes., 2022,, 93-102.		0
3	Stimulating Electrodes. , 2022, , 33-44.		0
4	Extracellular Recording of Propagating Action Potentials. , 2022, , 71-74.		0
5	Recording Electrodes., 2022, , 17-31.		0
6	Toward living neuroprosthetics: developing a biological brain pacemaker as a living neuromodulatory implant for improving parkinsonian symptoms. Journal of Neural Engineering, 2021, 18, 046081.	1.8	1
7	On neural recording using nanoprotrusion electrodes. Journal of Neural Engineering, 2020, 17, 016017.	1.8	11
8	Opportunities and dilemmas of in vitro nano neural electrodes. RSC Advances, 2020, 10, 187-200.	1.7	14
9	Principles of functional neural mapping using an intracortical ultra-density microelectrode array (ultra-density MEA). Journal of Neural Engineering, 2020, 17, 036018.	1.8	9
10	Perspectives on electrical neural recording: a revisit to the fundamental concepts. Journal of Neural Engineering, 2020, 17, 013001.	1.8	17
11	A neuronal wiring platform through microridges for rationally engineered neural circuits. APL Bioengineering, 2020, 4, 046106.	3.3	6
12	Optogenetics. , 2020, , 409-421.		0
13	Transcranial Magnetic Stimulation. , 2020, , 49-65.		1
14	Peripheral Nerve Electrodes., 2020,, 95-121.		3
15	Intracortical Electrodes. , 2020, , 67-94.		0
16	Neuromodulation of metabolic functions: from pharmaceuticals to bioelectronics to biocircuits. Journal of Biological Engineering, 2019, 13, 67.	2.0	8
17	Geometrically Enabled Soft Electroactuators via Laser Cutting. Advanced Engineering Materials, 2019, 21, 1900664.	1.6	23
18	Fast Electrochemical Netting of Composite Chains for Transferable Highly Conductive Polymeric Nanofilms. Journal of Physical Chemistry B, 2019, 123, 8580-8589.	1.2	5

#	Article	IF	CITATIONS
19	Intrinsically passivated polypyrrole/polyol-borate soft electroactuators. Sensors and Actuators A: Physical, 2019, 293, 200-206.	2.0	7
20	Batteryâ€free implantable insulin micropump operating at transcutaneously radio frequencyâ€transmittable power. Medical Devices & Sensors, 2019, 2, e10055.	2.7	12
21	Advancing the neurocomputer. Neurocomputing, 2018, 284, 36-51.	3 . 5	3
22	Integrated biocircuits: engineering functional multicellular circuits and devices. Journal of Neural Engineering, 2018, 15, 023001.	1.8	8
23	Enhancement of Intercellular Electrical Synchronization by Conductive Materials in Cardiac Tissue Engineering. IEEE Transactions on Biomedical Engineering, 2018, 65, 264-272.	2.5	29
24	Zinc oxide nanorod array as an inhibitory biointerface. MRS Communications, 2018, 8, 1381-1386.	0.8	5
25	Nano functional neural interfaces. Nano Research, 2018, 11, 5065-5106.	5. 8	23
26	An RF-driven lightweight implantable insulin pump. , 2018, , .		2
27	A Stretchable Microneedle Electrode Array for Stimulating and Measuring Intramuscular Electromyographic Activity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1440-1452.	2.7	27
28	Flexible Photocatalytic Composite Film of ZnO-Microrods/Polypyrrole. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29113-29119.	4.0	45
29	Cytotoxicity of ZnO Nanowire Arrays on Excitable Cells. Nanomaterials, 2017, 7, 80.	1.9	22
30	Recent Advances on Polypyrrole Electroactuators. Polymers, 2017, 9, 446.	2.0	41
31	Nanomaterial-Enabled Neural Stimulation. Frontiers in Neuroscience, 2016, 10, 69.	1.4	67
32	The Pursuit of Chronically Reliable Neural Interfaces: A Materials Perspective. Frontiers in Neuroscience, 2016, 10, 599.	1.4	15
33	Hydrogel-reinforced polypyrrole electroactuator. , 2016, 2016, 133-136.		1
34	Self-correcting multi-atlas segmentation. Proceedings of SPIE, 2016, , .	0.8	0
35	CHAPTER 9. Conducting Polymers as Smart Materials for Tissue Engineering. RSC Smart Materials, 2016, , 239-268.	0.1	4
36	Stretchable Polymeric Neural Electrode Array: Toward a Reliable Neural Interface. Materials Research Society Symposia Proceedings, 2015, 1795, 1-12.	0.1	0

#	Article	IF	Citations
37	Polypyrrole-Based Implantable Electroactive Pump for Controlled Drug Microinjection. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14563-14568.	4.0	20
38	Conducting Polymers: Stretchable Polymeric Multielectrode Array for Conformal Neural Interfacing (Adv. Mater. 9/2014). Advanced Materials, 2014, 26, 1310-1310.	11.1	1
39	Stretchable Polymeric Multielectrode Array for Conformal Neural Interfacing. Advanced Materials, 2014, 26, 1427-1433.	11.1	108
40	Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients. Science, 2013, 339, 186-189.	6.0	710
41	A PDMS-Based Integrated Stretchable Microelectrode Array (isMEA) for Neural and Muscular Surface Interfacing. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7, 1-10.	2.7	115
42	Regenerative microchannel electrode array for peripheral nerve interfacing. , 2011, , .		5
43	A low-cost, easy-fabricating stretchable microneedle-electrode array for intramuscular recording and stimulation. , $2011, $, .		3
44	Characterization of a stretchable multielectrode array for epimysial recording., 2011,,.		2
45	Selective Stimulation of the Spinal Cord Surface Using a Stretchable Microelectrode Array. Frontiers in Neuroengineering, 2011, 4, 5.	4.8	19
46	Highâ€Density Stretchable Electronics: Toward an Integrated Multilayer Composite. Advanced Materials, 2010, 22, 4030-4033.	11.1	54
47	An Effective Liftâ€Off Method for Patterning Highâ€Density Gold Interconnects on an Elastomeric Substrate. Small, 2010, 6, 2847-2852.	5.2	44
48	Improving impedance of implantable microwire multi-electrode arrays by ultrasonic electroplating of durable platinum black. Frontiers in Neuroengineering, 2010, 3, 5.	4.8	85
49	Interleaved multichannel epimysial stimulation for eliciting smooth contraction of muscle with reduced fatigue., 2010, 2010, 6226-9.		17
50	A PDMS-Based Conical-Well Microelectrode Array for Surface Stimulation and Recording of Neural Tissues. IEEE Transactions on Biomedical Engineering, 2010, 57, 2485-2494.	2.5	32
51	A conformable microelectrode array (cMEA) with integrated electronics for peripheral nerve interfacing. , 2010, , .		7
52	A hybrid muscle-in-the-loop robot system for studying the neuromechanical properties of movement. , 2010, , .		0
53	PDMS-based conformable microelectrode arrays with selectable novel 3-D microelectrode geometries for surface stimulation and recording., 2009, 2009, 1623-6.		9
54	Implementation of integratable PDMS-based conformable microelectrode arrays using a multilayer wiring interconnect technology., 2009, 2009, 1619-22.		6

#	Article	IF	CITATIONS
55	Muscle surface recording and stimulation using integrated PDMS-based microelectrode arrays: Recording-triggered stimulation for prosthetic purposes. , 2009, , .		5
56	A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomedical Microdevices, 2008, 10, 259-269.	1.4	87
57	A PDMS-based Elastic Multi-Electrode Array for Spinal Cord Surface Stimulation and its Electrode Modification to Enhance Performance. Materials Research Society Symposia Proceedings, 2007, 1009, 1.	0.1	1
58	The Detection of Seizure Vulnerable Period from Epidural EEG Recordings of Epilepsy Rat. , 0, , .		0