Noushin Nasiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9449662/publications.pdf

Version: 2024-02-01

331642 501174 1,536 34 21 28 h-index citations g-index papers 35 35 35 2326 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Advanced Functional Materials, 2017, 27, 1605271.	14.9	247
2	Ultraporous Electronâ€Depleted ZnO Nanoparticle Networks for Highly Sensitive Portable Visibleâ€Blind UV Photodetectors. Advanced Materials, 2015, 27, 4336-4343.	21.0	222
3	Omnidirectional Self-Assembly of Transparent Superoleophobic Nanotextures. ACS Nano, 2017, 11, 587-596.	14.6	104
4	Three-dimensional nano-heterojunction networks: a highly performing structure for fast visible-blind UV photodetectors. Nanoscale, 2017, 9, 2059-2067.	5.6	82
5	Nanostructured Gas Sensors for Medical and Health Applications: Low to High Dimensional Materials. Biosensors, 2019, 9, 43.	4.7	78
6	Nanostructured Chemiresistive Gas Sensors for Medical Applications. Sensors, 2019, 19, 462.	3.8	74
7	Low-Voltage High-Performance UV Photodetectors: An Interplay between Grain Boundaries and Debye Length. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2606-2615.	8.0	62
8	Nanoarchitechtonics of Visibleâ∈Blind Ultraviolet Photodetector Materials: Critical Features and Nanoâ∈Microfabrication. Advanced Optical Materials, 2019, 7, 1800580.	7.3	57
9	NiO–ZnO Nanoheterojunction Networks for Roomâ€Temperature Volatile Organic Compounds Sensing. Advanced Optical Materials, 2018, 6, 1800677.	7.3	54
10	Tunable Bandâ€Selective UVâ€Photodetectors by 3D Selfâ€Assembly of Heterogeneous Nanoparticle Networks. Advanced Functional Materials, 2016, 26, 7359-7366.	14.9	50
11	Self-assembly dynamics and accumulation mechanisms of ultra-fine nanoparticles. Nanoscale, 2015, 7, 9859-9867.	5.6	45
12	Robust Subâ∈Monolayers of Co ₃ O ₄ Nanoâ∈Islands: A Highly Transparent Morphology for Efficient Water Oxidation Catalysis. Advanced Energy Materials, 2016, 6, 1600697.	19.5	44
13	Ultra-rapid synthesis of highly porous and robust hierarchical ZnO films for dye sensitized solar cells. Solar Energy, 2016, 136, 553-559.	6.1	42
14	Structural Engineering of Nanoâ€Grain Boundaries for Lowâ€Voltage UVâ€Photodetectors with Gigantic Photoâ€to Darkâ€Current Ratios. Advanced Optical Materials, 2016, 4, 1787-1795.	7.3	42
15	One-Step Synthesis of Porous Transparent Conductive Oxides by Hierarchical Self-Assembly of Aluminum-Doped ZnO Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 9589-9599.	8.0	41
16	Hierarchical amorphous nanofibers for transparent inherently super-hydrophilic coatings. Journal of Materials Chemistry A, 2014, 2, 15575-15581.	10.3	36
17	Flexible Transparent Hierarchical Nanomesh for Rose Petalâ€Like Droplet Manipulation and Lossless Transfer. Advanced Materials Interfaces, 2015, 2, 1500071.	3.7	31
18	Scalable Synthesis of Efficient Water Oxidation Catalysts: Insights into the Activity of Flameâ€Made Manganese Oxide Nanocrystals. ChemSusChem, 2015, 8, 4162-4171.	6.8	30

#	Article	IF	CITATIONS
19	Ultraporous superhydrophobic gas-permeable nano-layers by scalable solvent-free one-step self-assembly. Nanoscale, 2016, 8, 6085-6093.	5.6	29
20	Nanostructured Gas Sensors: From Air Quality and Environmental Monitoring to Healthcare and Medical Applications. Nanomaterials, 2021, 11, 1927.	4.1	28
21	Ultra-Porous Nanoparticle Networks: A Biomimetic Coating Morphology for Enhanced Cellular Response and Infiltration. Scientific Reports, 2016, 6, 24305.	3.3	23
22	Optimally Hierarchical Nanostructured Hydroxyapatite Coatings for Superior Prosthesis Biointegration. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24840-24849.	8.0	20
23	A network analysis of angiogenesis/osteogenesis-related growth factors in bone tissue engineering based on in-vitro and in-vivo data: A systems biology approach. Tissue and Cell, 2021, 72, 101553.	2.2	20
24	Microstructural, mechanical and thermal properties of microwave sintered Cu-MWCNT nanocomposites. Journal of Alloys and Compounds, 2020, 822, 153675.	5.5	14
25	Metal-Organic-Frameworks: Low Temperature Gas Sensing and Air Quality Monitoring. Chemosensors, 2021, 9, 316.	3.6	13
26	Nanomaterials-based UV photodetectors. , 2019, , 123-149.		12
27	Flame-made ultra-porous TiO ₂ layers for perovskite solar cells. Nanotechnology, 2016, 27, 505403.	2.6	11
28	Elucidating Reaction Pathways of the CO ₂ Electroreduction via Tailorable Tortuosities and Oxidation States of Cu Nanostructures. Advanced Functional Materials, 2022, 32, .	14.9	9
29	Fractal dimension analysis of Mg2Si particles of Al–15%Mg2Si composite and its relationships to mechanical properties. Results in Materials, 2020, 7, 100118.	1.8	7
30	Nanomaterials in 3D bioprinting. , 2019, , 149-172.		3
31	Introductory Chapter: Wearable Technologies for Healthcare Monitoring. , 2019, , .		2
32	Advances in Wearable Sensing Technologies and Their Impact for Personalized and Preventive Medicine. , 0 , , .		2
33	Statistical Analysis of Laser-Welded Blanks in Deep Drawing Process: Response Surface Modeling. Journal of Materials Engineering and Performance, 0, , 1.	2.5	2
34	Aerosol self-assembly of nanoparticle films: growth dynamics and resulting 3D structure. , 2013, , .		0