Stefania Gallucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9449517/publications.pdf Version: 2024-02-01

STEEANIA CALLUCCI

#	Article	IF	CITATIONS
1	Natural adjuvants: Endogenous activators of dendritic cells. Nature Medicine, 1999, 5, 1249-1255.	30.7	1,479
2	Danger signals: SOS to the immune system. Current Opinion in Immunology, 2001, 13, 114-119.	5.5	1,106
3	Amyloid-DNA Composites of Bacterial Biofilms Stimulate Autoimmunity. Immunity, 2015, 42, 1171-1184.	14.3	181
4	Preliminary predictive criteria for COVID-19 cytokine storm. Annals of the Rheumatic Diseases, 2021, 80, 88-95.	0.9	165
5	The Dendritic Cell Response to Classic, Emerging, and Homeostatic Danger Signals. Implications for Autoimmunity. Frontiers in Immunology, 2013, 4, 138.	4.8	149
6	MHC class I, MHC class II and intercellular adhesion molecule-1 (ICAM-1) expression in inflammatory myopathies. Clinical and Experimental Immunology, 2008, 95, 166-172.	2.6	101
7	Nuclear Autoantigen Translocation and Autoantibody Opsonization Lead to Increased Dendritic Cell Phagocytosis and Presentation of Nuclear Antigens: A Novel Pathogenic Pathway for Autoimmunity?. Journal of Immunology, 2005, 175, 2692-2701.	0.8	82
8	Bacterial amyloid curli acts as a carrier for DNA to elicit an autoimmune response via TLR2 and TLR9. PLoS Pathogens, 2017, 13, e1006315.	4.7	82
9	DNA Sensing across the Tree of Life. Trends in Immunology, 2017, 38, 719-732.	6.8	77
10	Myoblasts produce IL-6 in response to inflammatory stimuli. International Immunology, 1998, 10, 267-273.	4.0	75
11	Testing Time-, Ignorance-, and Danger-Based Models of Tolerance. Journal of Immunology, 2001, 166, 3663-3671.	0.8	72
12	Triggers of Autoimmunity: The Role of Bacterial Infections in the Extracellular Exposure of Lupus Nuclear Autoantigens. Frontiers in Immunology, 2019, 10, 2608.	4.8	70
13	Complement Receptor 3 Ligation of Dendritic Cells Suppresses Their Stimulatory Capacity. Journal of Immunology, 2007, 178, 6268-6279.	0.8	68
14	Salmonella Typhimurium biofilm disruption by a human antibody that binds a pan-amyloid epitope on curli. Nature Communications, 2020, 11, 1007.	12.8	55
15	Poly(ADP-Ribose) Polymerase-1 Regulates the Progression of Autoimmune Nephritis in Males by Inducing Necrotic Cell Death and Modulating Inflammation. Journal of Immunology, 2009, 182, 7297-7306.	0.8	49
16	Myeloid Dendritic Cells from B6.NZM Sle1/Sle2/Sle3 Lupus-Prone Mice Express an IFN Signature That Precedes Disease Onset. Journal of Immunology, 2012, 189, 80-91.	0.8	47
17	The Role of MicroRNAs and Human Epidermal Growth Factor Receptor 2 in Proliferative Lupus Nephritis. Arthritis and Rheumatology, 2015, 67, 2415-2426.	5.6	46
18	IL-4 Suppresses Dendritic Cell Response to Type I Interferons. Journal of Immunology, 2007, 179, 6446-6455.	0.8	40

STEFANIA GALLUCCI

#	Article	IF	CITATIONS
19	Abnormal costimulatory phenotype and function of dendritic cells before and after the onset of severe murine lupus. Arthritis Research and Therapy, 2006, 8, R49.	3.5	38
20	The N-terminal fragment of GRP94 is sufficient for peptide presentation via professional antigen-presenting cells. International Immunology, 2006, 18, 1147-1157.	4.0	37
21	STAT2 Is Required for TLR-Induced Murine Dendritic Cell Activation and Cross-Presentation. Journal of Immunology, 2016, 197, 326-336.	0.8	35
22	A Role for B Cell-Activating Factor of the TNF Family in Chemically Induced Autoimmunity. Journal of Immunology, 2005, 175, 6163-6168.	0.8	32
23	Host STAT2/type I interferon axis controls tumor growth. International Journal of Cancer, 2015, 136, 117-126.	5.1	28
24	Kallikrein–Kinin System Suppresses Type I Interferon Responses: A Novel Pathway of Interferon Regulation. Frontiers in Immunology, 2018, 9, 156.	4.8	28
25	Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine, 2021, 146, 155633.	3.2	24
26	The Actin Regulatory Protein HS1 Is Required for Antigen Uptake and Presentation by Dendritic Cells. Journal of Immunology, 2011, 187, 5952-5963.	0.8	21
27	IL-4 Suppresses the Responses to TLR7 and TLR9 Stimulation and Increases the Permissiveness to Retroviral Infection of Murine Conventional Dendritic Cells. PLoS ONE, 2014, 9, e87668.	2.5	20
28	Persistent Bacteriuria and Antibodies Recognizing Curli/eDNA Complexes From <i>Escherichia coli</i> Are Linked to Flares in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2020, 72, 1872-1881.	5.6	20
29	TLR ligands up-regulate Trex1 expression in murine conventional dendritic cells through type I Interferon and NF-κB-dependent signaling pathways. Journal of Leukocyte Biology, 2014, 96, 93-103.	3.3	19
30	Graft-versus-host disease depletes plasmacytoid dendritic cell progenitors to impair tolerance induction. Journal of Clinical Investigation, 2021, 131, .	8.2	19
31	Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H684-H701.	3.2	16
32	Ethyl Pyruvate Modulates Murine Dendritic Cell Activation and Survival Through Their Immunometabolism. Frontiers in Immunology, 2019, 10, 30.	4.8	15
33	Inhibition of fatty acid metabolism by etomoxir or TOFA suppresses murine dendritic cell activation without affecting viability. Immunopharmacology and Immunotoxicology, 2019, 41, 361-369.	2.4	13
34	The cytokine network type I IFN-IL-27-IL-10 is augmented in murine and human lupus. Journal of Leukocyte Biology, 2019, 106, 967-975.	3.3	12
35	Immune-Mediated Nephropathy and Systemic Autoimmunity in Mice Does Not Require Receptor Interacting Protein Kinase 3 (RIPK3). PLoS ONE, 2016, 11, e0163611.	2.5	10
36	Conventional DCs from Male and Female Lupus-Prone B6.NZM Sle1/Sle2/Sle3 Mice Express an IFN Signature and Have a Higher Immunometabolism That Are Enhanced by Estrogen. Journal of Immunology Research, 2018, 2018, 1-21.	2.2	8

STEFANIA GALLUCCI

#	Article	IF	CITATIONS
37	Apoptotic Cell-Mediated Immunoregulation of Dendritic Cells Does Not Require iC3b Opsonization. Journal of Immunology, 2008, 181, 3018-3026.	0.8	7
38	Bisphenol A Does Not Mimic Estrogen in the Promotion of the In Vitro Response of Murine Dendritic Cells to Toll-Like Receptor Ligands. Mediators of Inflammation, 2017, 2017, 1-12.	3.0	6
39	Promise and complexity of lupus mouse models. Nature Immunology, 2021, 22, 683-686.	14.5	5
40	Targeted Stat2 deletion in conventional dendritic cells impairs CTL responses but does not affect antibody production. Oncolmmunology, 2021, 10, 1860477.	4.6	5
41	A150: Control of Cell Proliferation in Lupus Nephritis: The Role of miRNAs and HER2. Arthritis and Rheumatology, 2014, 66, S194-S194.	5.6	3
42	An Overview of the Innate Immune Response to Infectious and Noninfectious Stressors. , 2016, , 1-24.		2
43	Context-dependent induction of autoimmunity by TNF signaling deficiency. JCI Insight, 2022, 7, .	5.0	2
44	Thymulin and Ocular my Asthenia Gravis. Autoimmunity, 1992, 13, 337-338.	2.6	1
45	Response to: â€~Correspondence on â€~Preliminary predictive criteria for COVID-19 cytokine storm'' by Tampeet al. Annals of the Rheumatic Diseases, 2021, , annrheumdis-2020-219720.	0.9	1
46	Novel activators of dendritic cells as fundamental tools in immunotherapy. Expert Opinion on Therapeutic Patents, 2001, 11, 1411-1421.	5.0	0
47	Cellular Injury and Apoptosis. , 2014, , 245-256.		0
48	EF-07â€Curli amyloids/DNA complexes from bacterial biofilms break tolerance in murine lupus by triggering BCR/TLR signaling in B cells. , 2018, , .		0
49	163â€Bacterial biofilm product Curli/eDNA induces NETs and serum anti- Curli/eDNA levels correlate with bacteriuria and lupus activity. , 2019, , .		0
50	Cell Death and Autoimmune Disease. , 2020, , 291-303.		0
51	Role of Type I Interferons in Lupus nephritis FASEB Journal, 2008, 22, 668.19.	0.5	0
52	Graft-Versus-Host Disease Causes the Failure of Donor Hematopoietic Progenitor Cells to Reconstitute Plasmacytoid Dendritic Cells That Promote Tolerance of Donor T Cells Against the Host. Blood, 2019, 134, 193-193.	1.4	0
53	1701â€Curli amyloid/DNA complexes from bacterial biofilms break tolerance in murine lupus using T cell-independent and T cell-dependent modalities. , 2021, , .		0
54	403â€Bacterial biofilm product Curli/eDNA induces neutrophil extracellular traps and serum anti-Curli/eDNA levels correlate with bacteriuria and lupus activity. , 2021, , .		0

#	Article	IF	CITATIONS
55	296. Description of Super-infections in Hospitalized Patients with COVID-19. Open Forum Infectious Diseases, 2021, 8, S255-S256.	0.9	0
56	277. Low Rates of Bacterial Co-infection in Hospitalized Patients with COVID-19. Open Forum Infectious Diseases, 2021, 8, S244-S244.	0.9	0