
Ya-Xiong Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9449497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. , 2022, 234, 108044.		13
2	Regulation of Melanocortin-3 and -4 Receptors by Isoforms of Melanocortin-2 Receptor Accessory Protein 1 and 2. Biomolecules, 2022, 12, 244.	1.8	5
3	Mutations in rhodopsin, endothelin B receptor, and CC chemokine receptor 5 in large animals: Modeling human diseases. Progress in Molecular Biology and Translational Science, 2022, , .	0.9	0
4	Melanocortin-1 receptor mutations and pigmentation: Insights from large animals. Progress in Molecular Biology and Translational Science, 2022, , .	0.9	7
5	Demonstration of a Common DPhe ⁷ to DNal(2â€2) ⁷ Peptide Ligand Antagonist Switch for Melanocortin-3 and Melanocortin-4 Receptors Identifies the Systematic Mischaracterization of the Pharmacological Properties of Melanocortin Peptides. Journal of Medicinal Chemistry, 2022, 65, 5990-6000.	2.9	6
6	Development of a Therapeutic Peptide for Cachexia Suggests a Platform Approach for Drug-like Peptides. ACS Pharmacology and Translational Science, 2022, 5, 344-361.	2.5	5
7	Mutations in melanocortin-4 receptor: From fish to men. Progress in Molecular Biology and Translational Science, 2022, , 215-257.	0.9	5
8	Early transcriptomic response of mouse adrenal gland and Y-1 cells to dexamethasone. Endocrine Connections, 2022, , .	0.8	1
9	Pharmacological characterization of three chicken melanocortin-3 receptor mutants. Domestic Animal Endocrinology, 2021, 74, 106507.	0.8	2
10	Biased signaling in naturally occurring mutations of G protein-coupled receptors associated with diverse human diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 165973.	1.8	24
11	Exploring Pleiotropic Functions of Canine βâ€Defensin 103: Nasal Cavity Expression, Antimicrobial Activity, and Melanocortin Receptor Activity. Anatomical Record, 2021, 304, 210-221.	0.8	5
12	MRAP2 Interaction with Melanocortin-4 Receptor in SnakeHead (Channa argus). Biomolecules, 2021, 11, 481.	1.8	23
13	Regulation of Melanocortin-5 Receptor Pharmacology by Two Isoforms of MRAP2 in Ricefield Eel (Monopterus albus). Journal of the Endocrine Society, 2021, 5, A508-A508.	0.1	0
14	Topmouth culter melanocortin-3 receptor: regulation by two isoforms of melanocortin-2 receptor accessory protein 2. Endocrine Connections, 2021, 10, 1489-1501.	0.8	11
15	Regulation of melanocortin-5 receptor pharmacology by two isoforms of MRAP2 in ricefield eel (Monopterus albus). General and Comparative Endocrinology, 2021, 314, 113928.	0.8	6
16	Regulation of melanocortin-1 receptor pharmacology by melanocortin receptor accessory protein 2 in orange-spotted grouper (Epinephelus coioides). General and Comparative Endocrinology, 2020, 285, 113291.	0.8	9
17	Endothelial Cell Cystathionine Î³â€Łyase Expression Level Modulates Exercise Capacity, Vascular Function, and Myocardial Ischemia Reperfusion Injury. Journal of the American Heart Association, 2020, 9, e017544.	1.6	27
18	Alanine Scanning Mutagenesis of the DRYxxI Motif and Intracellular Loop 2 of Human Melanocortin-4 Receptor. International Journal of Molecular Sciences, 2020, 21, 7611.	1.8	11

#	Article	IF	CITATIONS
19	Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor. International Journal of Molecular Sciences, 2020, 21, 5728.	1.8	12
20	Regulation of Melanocortin-4 Receptor Pharmacology by Two Isoforms of Melanocortin Receptor Accessory Protein 2 in Topmouth Culter (Culter alburnus). Frontiers in Endocrinology, 2020, 11, 538.	1.5	17
21	Molecular chaperones and G protein-coupled receptor maturation and pharmacology. Molecular and Cellular Endocrinology, 2020, 511, 110862.	1.6	27
22	Nerve growth factor in metabolic complications and Alzheimer's disease: Physiology and therapeutic potential. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165858.	1.8	13
23	Melanocortin-4 receptor regulation of reproductive function in black rockfish (Sebastes schlegelii). Gene, 2020, 741, 144541.	1.0	15
24	Mandarin fish (Sinipercidae) genomes provide insights into innate predatory feeding. Communications Biology, 2020, 3, 361.	2.0	33
25	Biased signaling in fish melanocortin-4 receptors (MC4Rs): Divergent pharmacology of four ligands on spotted scat (Scatophagus argus) and grass carp (Ctenopharyngodon idella) MC4Rs. Molecular and Cellular Endocrinology, 2020, 515, 110929.	1.6	15
26	Orange-spotted grouper melanocortin-4 receptor: Modulation of signaling by MRAP2. General and Comparative Endocrinology, 2019, 284, 113234.	0.8	31
27	Melanocortin-4 Receptor in Spotted Sea Bass, Lateolabrax maculatus: Cloning, Tissue Distribution, Physiology, and Pharmacology. Frontiers in Endocrinology, 2019, 10, 705.	1.5	28
28	Melanocortin Regulation of Inflammation. Frontiers in Endocrinology, 2019, 10, 683.	1.5	67
29	Preface. Progress in Molecular Biology and Translational Science, 2019, 161, xi.	0.9	0
30	Mutations in GPR101 as a potential cause of X-linked acrogigantism and acromegaly. Progress in Molecular Biology and Translational Science, 2019, 161, 47-67.	0.9	6
31	Physiology, pharmacology, and pathophysiology of neuropeptide S receptor. Progress in Molecular Biology and Translational Science, 2019, 161, 125-148.	0.9	5
32	The impact of acute thermal stress on the metabolome of the black rockfish (Sebastes schlegelii). PLoS ONE, 2019, 14, e0217133.	1.1	39
33	PPAR-δ Activation Ameliorates Diabetes-Induced Cognitive Dysfunction by Modulating Integrin-linked Kinase and AMPA Receptor Function. Journal of the American College of Nutrition, 2019, 38, 693-702.	1.1	7
34	Characterization of channel catfish (Ictalurus punctatus) melanocortin-3 receptor reveals a potential network in regulation of energy homeostasis. General and Comparative Endocrinology, 2019, 277, 90-103.	0.8	30
35	Effects of photoperiod and light Spectrum on growth performance, digestive enzymes, hepatic biochemistry and peripheral hormones in spotted sea bass (Lateolabrax maculatus). Aquaculture, 2019, 507, 419-427.	1.7	27
36	Pharmacology of the giant panda (Ailuropoda melanoleuca) melanocortin-3 receptor. General and Comparative Endocrinology, 2019, 277, 73-81.	0.8	8

#	Article	IF	CITATIONS
37	Therapeutic strategies for diseases caused by loss-of-function mutations in G protein-coupled receptors. Progress in Molecular Biology and Translational Science, 2019, 161, 181-210.	0.9	6
38	Physiology and pathophysiology of the \hat{l}^2 3-adrenergic receptor. Progress in Molecular Biology and Translational Science, 2019, 161, 91-112.	0.9	19
39	Fenoprofen—An Old Drug Rediscovered as a Biased Allosteric Enhancer for Melanocortin Receptors. ACS Chemical Neuroscience, 2019, 10, 1066-1074.	1.7	9
40	Molecular cloning, tissue distribution, and pharmacological characterization of blunt snout bream (Megalobrama amblycephala) melanocortin-5 receptor. Fish Physiology and Biochemistry, 2019, 45, 311-321.	0.9	8
41	SUN-480 Melanocortin-4 Receptor In Spotted Sea Bass: Cloning, Tissue Distribution, Physiology And Pharmacology. Journal of the Endocrine Society, 2019, 3, .	0.1	0
42	Expression of estrogen receptors in female rainbow trout (Oncorhynchus mykiss) during first ovarian development and under dense rearing condition. General and Comparative Endocrinology, 2018, 259, 1-11.	0.8	2
43	Hydrogen Sulfide Attenuates ReninÂAngiotensin and Aldosterone Pathological Signaling to Preserve KidneyÂFunction and Improve ExerciseATolerance in Heart Failure. JACC Basic To Translational Science, 2018, 3, 796-809.	1.9	28
44	Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders. Expert Review of Clinical Pharmacology, 2018, 11, 611-624.	1.3	32
45	Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Physiological Reviews, 2018, 98, 697-725.	13.1	74
46	Melanocortin-4 receptor in swamp eel (Monopterus albus): Cloning, tissue distribution, and pharmacology. Gene, 2018, 678, 79-89.	1.0	30
47	Regulation of prostate cancer by hormone-responsive G protein-coupled receptors. , 2018, 191, 135-147.		22
48	Ammonia nitrogen excretion in Mandarin Fish (<i>Siniperca chuatsi</i>) and Grass Carp (<i>Ctenopharyngodon idellus</i>) fed practical diets: theÂeffects of water temperature. Aquaculture Research, 2017, 48, 836-843.	0.9	11
49	Effects of melanocortin-4 receptor agonists and antagonists on expression of genes related to reproduction in spotted scat, Scatophagus argus. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2017, 187, 603-612.	0.7	30
50	Pharmacological chaperones for the misfolded melanocortin-4 receptor associated with human obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2496-2507.	1.8	27
51	Biased signaling at neural melanocortin receptors in regulation of energy homeostasis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2486-2495.	1.8	61
52	Effects of fasting, temperature, and photoperiod on preproghrelin mRNA expression in Chinese perch. Fish Physiology and Biochemistry, 2017, 43, 803-812.	0.9	7
53	Molecular cloning, tissue distribution, and pharmacological characterization of melanocortin-4 receptor in grass carp (Ctenopharyngodon idella). Domestic Animal Endocrinology, 2017, 59, 140-151.	0.8	32
54	Melanocortin receptors. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2411-2413.	1.8	29

#	Article	IF	CITATIONS
55	Eicosapentaenoic acid abolishes inhibition of insulin-induced mTOR phosphorylation by LPS via PTP1B downregulation in skeletal muscle. Molecular and Cellular Endocrinology, 2017, 439, 116-125.	1.6	14
56	Biased signaling initiated by agouti-related peptide through human melanocortin-3 and -4 receptors. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1485-1494.	1.8	38
57	Molecular cloning, tissue distribution, and pharmacological characterization of melanocortin-4 receptor in spotted scat, Scatophagus argus. General and Comparative Endocrinology, 2016, 230-231, 143-152.	0.8	40
58	Mutations in Melanocortin-3 Receptor Gene and Human Obesity. Progress in Molecular Biology and Translational Science, 2016, 140, 97-129.	0.9	31
59	Chrelin Receptor Mutations and Human Obesity. Progress in Molecular Biology and Translational Science, 2016, 140, 131-150.	0.9	17
60	Hypothalamus-pituitary-gonad axis of rainbow trout (Oncorhynchus mykiss) during early ovarian development and under dense rearing condition. General and Comparative Endocrinology, 2016, 236, 131-138.	0.8	8
61	Identification and pharmacological analyses of eight naturally occurring caprine melanocortin-1 receptor mutations in three different goat breeds. General and Comparative Endocrinology, 2016, 235, 1-10.	0.8	4
62	Leptin expression in mandarin fish Siniperca chuatsi (Basilewsky): Regulation by postprandial and short-term fasting treatment. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2016, 194, 8-18.	0.8	32
63	CPR120 promotes adipogenesis through intracellular calcium and extracellular signal-regulated kinase 1/2 signal pathway. Molecular and Cellular Endocrinology, 2016, 434, 1-13.	1.6	41
64	Genomic structure, tissue expression and single nucleotide polymorphisms of lipoprotein lipase and hepatic lipase genes in Chinese perch. Aquaculture Nutrition, 2016, 22, 786-800.	1.1	4
65	Adaptations of lipid metabolism and food intake in response to low and high fat diets in juvenile grass carp (Ctenopharyngodon idellus). Aquaculture, 2016, 457, 43-49.	1.7	109
66	Molecular cloning and pharmacological characterization of giant panda (Ailuropoda melanoleuca) melanocortin-4 receptor. General and Comparative Endocrinology, 2016, 229, 32-40.	0.8	8
67	Pharmacologic analyses of four chicken melanocortin-4 receptor mutations. Domestic Animal Endocrinology, 2016, 54, 68-75.	0.8	7
68	Biased Signaling in Naturally Occurring Mutations in Human Melanocortin-3 Receptor Gene. International Journal of Biological Sciences, 2015, 11, 423-433.	2.6	26
69	Sustained release nitrite therapy results in myocardial protection in a porcine model of metabolic syndrome with peripheral vascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H305-H317.	1.5	13
70	Transcriptome analysis of food habit transition from carnivory to herbivory in a typical vertebrate herbivore, grass carp Ctenopharyngodon idella. BMC Genomics, 2015, 16, 15.	1.2	43
71	Obestatin partially suppresses ghrelin stimulation of appetite in "high-responders―grass carp, Ctenopharyngodon idellus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 184, 144-149.	0.8	10
72	Molecular cloning and tissue expression of uncoupling protein 1, 2 and 3 genes in Chinese perch (Siniperca chuatsi). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2015, 185, 24-33.	0.7	19

#	Article	IF	CITATIONS
73	Therapeutic potential of sustained-release sodium nitrite for critical limb ischemia in the setting of metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H82-H92.	1.5	15
74	Transcriptome analysis of grass carp (Ctenopharyngodon idella) fed with animal and plant diets. Gene, 2015, 574, 371-379.	1.0	14
75	Molecular cloning, expression and single nucleotide polymorphisms of protein phosphatase 1 (PP1) in mandarin fish (Siniperca chuatsi). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2015, 189, 69-79.	0.7	5
76	Functions of DPLIY motif and helix 8 of human melanocortin-3 receptor. Journal of Molecular Endocrinology, 2015, 55, 107-117.	1.1	15
77	A Small Molecule Agonist THIQ as a Novel Pharmacoperone for Intracellularly Retained Melanocortin-4 Receptor Mutants. International Journal of Biological Sciences, 2014, 10, 817-824.	2.6	26
78	Defect in MAPK Signaling As a Cause for Monogenic Obesity Caused By Inactivating Mutations in the Melanocortin-4 Receptor Gene. International Journal of Biological Sciences, 2014, 10, 1128-1137.	2.6	43
79	Chaperoning G Protein-Coupled Receptors: From Cell Biology to Therapeutics. Endocrine Reviews, 2014, 35, 602-647.	8.9	114
80	Functions of the DRY motif and intracellular loop 2 of human melanocortin 3 receptor. Journal of Molecular Endocrinology, 2014, 53, 319-330.	1.1	27
81	Preface. Advances in Pharmacology, 2014, 70, ix-x.	1.2	3
82	Ipsen 5i is a Novel Potent Pharmacoperone for Intracellularly Retained Melanocortin-4 Receptor Mutants. Frontiers in Endocrinology, 2014, 5, 131.	1.5	27
83	Constitutive Activity in Melanocortin-4 Receptor. Advances in Pharmacology, 2014, 70, 135-154.	1.2	61
84	Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3182-3187.	3.3	301
85	Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, <i>Danio rerio</i> . British Journal of Nutrition, 2014, 111, 808-818.	1.2	77
86	Targeting GPR119 for the Potential Treatment of Type 2 Diabetes Mellitus. Progress in Molecular Biology and Translational Science, 2014, 121, 95-131.	0.9	14
87	G Protein-Coupled Receptors as Regulators of Glucose Homeostasis and Therapeutic Targets for Diabetes Mellitus. Progress in Molecular Biology and Translational Science, 2014, 121, 1-21.	0.9	7
88	Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants. International Journal of Obesity, 2014, 38, 1068-1074.	1.6	15
89	Physiology and Therapeutics of the Free Fatty Acid Receptor GPR40. Progress in Molecular Biology and Translational Science, 2014, 121, 67-94.	0.9	15
90	Nitrite Therapy Improves Left Ventricular Function During Heart Failure via Restoration of Nitric Oxide–Mediated Cytoprotective Signaling. Circulation Research, 2014, 114, 1281-1291.	2.0	63

#	Article	IF	CITATIONS
91	Abstract 16763: Mechanical Circulatory Support Promotes Myocardial Nitric Oxide Signaling in Heart Failure Patients. Circulation, 2014, 130, .	1.6	2
92	G Protein-Coupled Receptors as Regulators of Energy Homeostasis. Progress in Molecular Biology and Translational Science, 2013, 114, 1-43.	0.9	14
93	Insights into food preference in hybrid F1 of Siniperca chuatsi (♀) × Siniperca scherzeri (â™,) manda through transcriptome analysis. BMC Genomics, 2013, 14, 601.	arin fish 1.2	72
94	Gene structure and expression of leptin in Chinese perch. General and Comparative Endocrinology, 2013, 194, 183-188.	0.8	21
95	Activation of MAPK by inverse agonists in six naturally occurring constitutively active mutant human melanocortin-4 receptors. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1939-1948.	1.8	44
96	Free Fatty Acid Receptor GPR120 and Pathogenesis of Obesity and Type 2 Diabetes Mellitus. Progress in Molecular Biology and Translational Science, 2013, 114, 251-276.	0.9	26
97	Feeding a DHA-enriched diet increases skeletal muscle protein synthesis in growing pigs: association with increased skeletal muscle insulin action and local mRNA expression of insulin-like growth factor 1. British Journal of Nutrition, 2013, 110, 671-680.	1.2	47
98	Preface. Progress in Molecular Biology and Translational Science, 2013, 114, xiii.	0.9	0
99	Functions of the Third Intracellular Loop of the Human Melanocortin-3 Receptor. Current Pharmaceutical Design, 2013, 19, 4831-4838.	0.9	9
100	Selective β ₂ -Adrenoreceptor Stimulation Attenuates Myocardial Cell Death and Preserves Cardiac Function After Ischemia–Reperfusion Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1865-1874.	1.1	28
101	Functions of transmembrane domain 3 of human melanocortin-4 receptor. Journal of Molecular Endocrinology, 2012, 49, 221-235.	1.1	45
102	Pleiotropic functions of the transmembrane domain 6 of human melanocortin-4 receptor. Journal of Molecular Endocrinology, 2012, 49, 237-248.	1.1	32
103	Expression of melanocortin receptors in human prostate cancer cell lines: MC2R activation by ACTH increases prostate cancer cell proliferation. International Journal of Oncology, 2012, 41, 1373-1380.	1.4	11
104	Functional characterization of nine novel naturally occurring human melanocortin-3 receptor mutations. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1752-1761.	1.8	24
105	Pharmacological characterization of canine melancortin-4 receptor and its natural variant V213F. Domestic Animal Endocrinology, 2011, 41, 91-97.	0.8	16
106	Functional studies on twenty novel naturally occurring melanocortin-4 receptor mutations. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1190-1199.	1.8	46
107	Pancreatic neuronal melanocortin-4 receptor modulates serum insulin levels independent of leptin receptor. Endocrine, 2010, 37, 220-230.	1.1	26
108	The Melanocortin-4 Receptor: Physiology, Pharmacology, and Pathophysiology. Endocrine Reviews, 2010, 31, 506-543.	8.9	435

#	Article	IF	CITATIONS
109	Constitutive Activity of Neural Melanocortin Receptors. Methods in Enzymology, 2010, 484, 267-279.	0.4	63
110	Mutations in the melanocortin-3 receptor (MC3R) gene: Impact on human obesity or adiposity. Current Opinion in Investigational Drugs, 2010, 11, 1092-6.	2.3	29
111	Chapter 5 Follicle Stimulating Hormone Receptor Mutations and Reproductive Disorders. Progress in Molecular Biology and Translational Science, 2009, 89, 115-131.	0.9	22
112	Preface. Progress in Molecular Biology and Translational Science, 2009, 89, xi-xii.	0.9	0
113	Preface. Progress in Molecular Biology and Translational Science, 2009, 88, xi-xii.	0.9	0
114	Chapter 6 Mutations in Melanocortinâ€4 Receptor and Human Obesity. Progress in Molecular Biology and Translational Science, 2009, 88, 173-204.	0.9	87
115	Functional characterization and pharmacological rescue of melanocortinâ€4 receptor mutations identified from obese patients. Journal of Cellular and Molecular Medicine, 2009, 13, 3268-3282.	1.6	86
116	A novel melanocortin-4 receptor gene mutation in a female patient with severe childhood obesity. Endocrine, 2009, 36, 52-59.	1.1	24
117	Genistein decreases androgen biosynthesis in rat Leydig cells by interference with luteinizing hormone-dependent signaling. Toxicology Letters, 2009, 184, 169-175.	0.4	37
118	Functions of Transmembrane Domain 6 in Human Melanocortinâ€4 Receptor. FASEB Journal, 2009, 23, 943.4.	0.2	0
119	Functions of acidic transmembrane residues in human melanocortin-3 receptor binding and activation. Biochemical Pharmacology, 2008, 76, 520-530.	2.0	47
120	Constitutive activation of G protein-coupled receptors and diseases: Insights into mechanisms of activation and therapeutics. , 2008, 120, 129-148.		143
121	Pharmacological analyses of two naturally occurring porcine melanocortin-4 receptor mutations in domestic pigs. Domestic Animal Endocrinology, 2008, 34, 383-390.	0.8	33
122	Molecular cloning and pharmacological characterization of porcine melanocortin-3 receptor. Journal of Endocrinology, 2007, 196, 139-148.	1.2	30
123	Intrinsic Differences in the Response of the Human Lutropin Receptor Versus the Human Follitropin Receptor to Activating Mutations. Journal of Biological Chemistry, 2007, 282, 25527-25539.	1.6	44
124	Functional characterization of novel melanocortin-3 receptor mutations identified from obese subjects. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 1167-1174.	1.8	56
125	Molecular analysis of the neuropeptide Y1 receptor gene in human idiopathic gonadotropin-dependent precocious puberty and isolated hypogonadotropic hypogonadism. Fertility and Sterility, 2007, 87, 627-634.	0.5	19
126	Inactivating Melanocortin 4 Receptor Mutations and Human Obesity. , 2007, , 45-58.		0

#	Article	IF	CITATIONS
127	Identification and functional characterization of three novel human melanocortin-4 receptor gene variants in an obese Chinese population. Clinical Endocrinology, 2006, 65, 198-205.	1.2	34
128	Inactivating mutations of G protein-coupled receptors and diseases: Structure-function insights and therapeutic implications. , 2006, 111, 949-973.		123
129	Functional Analyses of Melanocortin-4 Receptor Mutations Identified from Patients with Binge Eating Disorder and Nonobese or Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 5632-5638.	1.8	92
130	Molecular mechanisms of the neural melanocortin receptor dysfunction in severe early onset obesity. Molecular and Cellular Endocrinology, 2005, 239, 1-14.	1.6	172
131	Functional Characterization of Melanocortin-3 Receptor Variants Identify a Loss-of-Function Mutation Involving an Amino Acid Critical for G Protein-Coupled Receptor Activation. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3936-3942.	1.8	78
132	Constitutive and Agonist-dependent Self-association of the Cell Surface Human Lutropin Receptor. Journal of Biological Chemistry, 2004, 279, 5904-5914.	1.6	91
133	Desensitization of Gs-Coupled Receptor Signaling by Constitutively Active Mutants of the Human Lutropin/Choriogonadotropin Receptor. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1194-1204.	1.8	15
134	Deletion of Codons 88–92 of the Melanocortin-4 Receptor Gene: A Novel Deleterious Mutation in an Obese Female. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 5841-5845.	1.8	41
135	Functional Characterization of Melanocortin-4 Receptor Mutations Associated with Childhood Obesity. Endocrinology, 2003, 144, 4544-4551.	1.4	181
136	Chimeras of the Rat and Human FSH Receptors (FSHRs) Identify Residues that Permit or Suppress Transmembrane 6 Mutation-Induced Constitutive Activation of the FSHR via Rearrangements of Hydrophobic Interactions Between Helices 6 and 7. Molecular Endocrinology, 2002, 16, 1881-1892.	3.7	26
137	Constitutive Activation of G Protein-Coupled Receptors as a Result of Selective Substitution of a Conserved Leucine Residue in Transmembrane Helix III. Molecular Endocrinology, 2000, 14, 1272-1282.	3.7	55
138	The urinary bladder of a woman is a novel site of luteinizing hormone–human chorionic gonadotropin receptor gene expression. American Journal of Obstetrics and Gynecology, 1998, 179, 1026-1031.	0.7	30
139	Expression of Luteinizing Hormone/Human Chorionic Gonadotropin Receptor Gene in Benign Prostatic Hyperplasia and in Prostate Carcinoma in Humans. Biology of Reproduction, 1997, 56, 67-72.	1.2	58
140	The presence of luteinizing hormone/human chorionic gonadotropin receptors in lactating rat mammary glands. Life Sciences, 1997, 60, 1297-1303.	2.0	22
141	Human Intermediate Trophoblasts Express Chorionic Gonadotropin/Luteinizing Hormone Receptor Gene. Biology of Reproduction, 1995, 53, 899-904.	1.2	50
142	Novel expression of luteinizing hormone/chorionic gonadotropin receptor gene in rat prostates. Molecular and Cellular Endocrinology, 1995, 111, R9-R12.	1.6	35
143	Hormonal induction of precocious sex reversal in the ricefield eel, Monopterus albus. Aquaculture, 1993, 118, 131-140.	1.7	43
144	Modulation of interferon secretion by concanavalin A and interleukin-2 in first trimester placental explants in vitro. Journal of Reproductive Immunology, 1993, 24, 201-212.	0.8	12

#	Article	IF	CITATIONS
145	Trophoblast interferons of primates. Placenta, 1992, 13, A62.	0.7	0