Jing Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9448854/publications.pdf Version: 2024-02-01

LINIC KANC

#	Article	lF	CITATIONS
1	Powdered activated carbon doping improves the mechanical and adsorption properties of cementitious microfiltration membrane. Chemosphere, 2022, 287, 132260.	8.2	4
2	Enhanced degradation of iohexol in water by CuFe2O4 activated peroxymonosulfate: Efficiency, mechanism and degradation pathway. Chemosphere, 2022, 289, 133198.	8.2	23
3	Degradation of iopamidol by silicate-based microfiltration membrane activated peroxymonosulfate in aqueous solution: Efficiency, mechanism and degradation pathway. Journal of Cleaner Production, 2022, 338, 130562.	9.3	2
4	Regrowth potential of chlorine-resistant bacteria in drinking water under chloramination. Journal of Hazardous Materials, 2022, 428, 128264.	12.4	4
5	N-nitrosodimethylamine formation during oxidation of N,N-dimethylhydrazine compounds by peroxymonosulfate: Kinetics, reactive species, mechanism and influencing factors. Journal of Hazardous Materials, 2022, 428, 128191.	12.4	15
6	Preparation of novel N-doped biochar and its high adsorption capacity for atrazine based on π–π electron donor-acceptor interaction. Journal of Hazardous Materials, 2022, 432, 128757.	12.4	112
7	Non-radical dominated degradation of bisphenol S by peroxymonosulfate activation under high salinity condition: Overlooked HOCl, formation of intermediates, and toxicity assessment. Journal of Hazardous Materials, 2022, 435, 128968.	12.4	14
8	Characteristics and disinfection by-product formation potential of dissolved organic matter in reservoir water in cold area. Chemosphere, 2022, 301, 134769.	8.2	11
9	Comparative study of BiVO ₄ and BiVO ₄ /Ag ₂ O regarding their properties and photocatalytic degradation mechanism. New Journal of Chemistry, 2022, 46, 11608-11616.	2.8	7
10	Generation of interfacial high-spin manganese intermediates as reactive oxidant during peroxymonosulfate activation mediated by amorphous MnOx supported on polymeric substrate. Applied Catalysis B: Environmental, 2022, 316, 121671.	20.2	5
11	Activation of peroxymonosulfate by nanoscaled NiFe2O4 magnetic particles for the degradation of 2,4-dichlorophenoxyacetic acid in water: Efficiency, mechanism and degradation pathways. Separation and Purification Technology, 2022, 297, 121459.	7.9	20
12	Interface mechanism of peroxymonosulfate activation by cobalt-copper-ferrite nanoparticles mediated by palygorskite for bisphenol S degradation: A dual-path activation mechanism. Chemical Engineering Journal, 2022, 448, 137609.	12.7	14
13	Removal of 2,6-dichlorophenol in water by CuO activated peroxymonosulfate: Efficiency, mechanism and degradation pathway. Separation and Purification Technology, 2021, 254, 117630.	7.9	25
14	Catalytic ozonation with silicate-based microfiltration membrane for the removal of iopamidol in aqueous solution. Separation and Purification Technology, 2021, 257, 117873.	7.9	10
15	UV/ peroxymonosulfate process for degradation of chloral hydrate: Pathway and the role of radicals. Journal of Hazardous Materials, 2021, 401, 123837.	12.4	41
16	Impact of hydraulic retention time on swine wastewater treatment by aerobic granular sludge sequencing batch reactor. Environmental Science and Pollution Research, 2021, 28, 5927-5937.	5.3	14
17	Application of Fourier transform ion cyclotron resonance mass spectrometry in deciphering molecular composition of soil organic matter: A review. Science of the Total Environment, 2021, 756, 144140.	8.0	20
18	Selective adsorption and enhanced photodegradation of diclofenac in water by molecularly imprinted TiO2. Journal of Hazardous Materials, 2021, 407, 124759.	12.4	45

Jing Kang

#	Article	IF	CITATIONS
19	The performance of aerobic granular sludge for simulated swine wastewater treatment and the removal mechanism of tetracycline. Journal of Hazardous Materials, 2021, 408, 124762.	12.4	35
20	Structure activity relationship study of N-doped ligand modified Fe(III)/H2O2 for degrading organic pollutants. Journal of Hazardous Materials, 2021, 404, 124142.	12.4	13
21	Catalytic ozonation of iohexol with α-Fe0.9Mn0.1OOH in water: Efficiency, degradation mechanism and toxicity evaluation. Journal of Hazardous Materials, 2021, 402, 123574.	12.4	32
22	Formation of toxic iodinated by-products during the oxidation process of iohexol by catalytic ozonation in water. Separation and Purification Technology, 2021, 262, 118287.	7.9	3
23	EEM–PARAFAC characterization of dissolved organic matter and its relationship with disinfection by-products formation potential in drinking water sources of northeastern China. Science of the Total Environment, 2021, 774, 145297.	8.0	92
24	Improvement of the fabricated and application of aluminosilicate-based microfiltration membrane. Chemosphere, 2021, 273, 129628.	8.2	9
25	Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants. Membranes, 2021, 11, 532.	3.0	1
26	Adsorption property and mechanism of polyacrylate-divinylbenzene microspheres for removal of trace organic micropollutants from water. Science of the Total Environment, 2021, 781, 146635.	8.0	19
27	Catalytic Efficiency of Carbon-Cementitious Microfiltration Membrane on the Ozonation-Based Oxidation of Small Molecule Organic Compounds and Its Alkaline Buffering Effect in Aqueous Solution. Membranes, 2021, 11, 601.	3.0	0
28	Dynamic adsorption models and artificial neural network prediction of mercury adsorption by a dendrimer-grafted polyacrylonitrile fiber in fixed-bed column. Journal of Cleaner Production, 2021, 310, 127511.	9.3	30
29	Degradation of bisphenol S by peroxymonosulfate activation through monodispersed CoFe2O4 nanoparticles anchored on natural palygorskite. Separation and Purification Technology, 2021, 277, 119492.	7.9	22
30	Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant. Chemosphere, 2020, 242, 125227.	8.2	38
31	Efficiently enhanced Fenton-like reaction via Fe complex immobilized on silica particles for catalytic hydrogen peroxide degradation of 2,4-dichlorophenol. Applied Catalysis B: Environmental, 2020, 268, 118453.	20.2	55
32	Spectral and mass spectrometric characteristics of different molecular weight fractions of dissolved organic matter. Separation and Purification Technology, 2020, 253, 117390.	7.9	29
33	Effect of carbon source on pollutant removal and microbial community dynamics in treatment of swine wastewater containing antibiotics by aerobic granular sludge. Chemosphere, 2020, 260, 127544.	8.2	45
34	Isolation of oxytetracycline-degrading bacteria and its application in improving the removal performance of aerobic granular sludge. Journal of Environmental Management, 2020, 272, 111115.	7.8	17
35	Interface mechanism of catalytic ozonation in an α-Fe0.9Mn0.10OH aqueous suspension for the removal of iohexol. Applied Catalysis B: Environmental, 2020, 277, 119055.	20.2	38
36	Catalytic ozonation by Si-doped α-Fe2O3 for the removal of nitrobenzene in aqueous solution. Separation and Purification Technology, 2019, 228, 115766.	7.9	42

Jing Kang

#	Article	IF	CITATIONS
37	Mechanism of oxytetracycline removal by aerobic granular sludge in SBR. Water Research, 2019, 161, 308-318.	11.3	79
38	The key role of inoculated sludge in fast start-up of sequencing batch reactor for the domestication of aerobic granular sludge. Journal of Environmental Sciences, 2019, 78, 127-136.	6.1	28
39	Impact of carbon to nitrogen ratio on the performance of aerobic granular reactor and microbial population dynamics during aerobic sludge granulation. Bioresource Technology, 2019, 271, 258-265.	9.6	55
40	Removal of tetracycline by aerobic granular sludge and its bacterial community dynamics in SBR. RSC Advances, 2018, 8, 18284-18293.	3.6	62
41	Influence of humic acid on the removal of arsenate and arsenic by ferric chloride: effects of pH, As/Fe ratio, initial As concentration, and co-existing solutes. Environmental Science and Pollution Research, 2017, 24, 2381-2393.	5.3	27
42	Profiles and risk assessment of phthalate acid esters (PAEs) in drinking water sources and treatment plants, East China. Environmental Science and Pollution Research, 2017, 24, 23646-23657.	5.3	17
43	Response surface methodology investigation into optimization of the removal condition and mechanism of Cr(â¥) by Na 2 SO 3 /CaO. Journal of Environmental Management, 2017, 202, 38-45.	7.8	15
44	Heterogeneous Catalytic Ozonation of Sulfamethoxazole in Aqueous Solution over Composite Iron–Manganese Silicate Oxide. Ozone: Science and Engineering, 2017, 39, 24-32.	2.5	12
45	Leaching mechanisms of constituents from fly ash under the influence of humic acid. Journal of Hazardous Materials, 2017, 321, 647-660.	12.4	29
46	Occurrence of organochlorine pesticides from typical water sources in YiXing City, Taihu Upper-River Basin, East China. RSC Advances, 2016, 6, 114159-114170.	3.6	2
47	Investigation on the Kinetics of Heterogeneous Catalytic Ozone Decomposition in Aqueous Solution over Composite Iron-Manganese Silicate Oxide. Ozone: Science and Engineering, 2016, 38, 434-442.	2.5	5
48	Catalytic ozonation of sulfamethoxazole by composite iron-manganese silicate oxide: cooperation mechanism between adsorption and catalytic reaction. Environmental Science and Pollution Research, 2016, 23, 21360-21368.	5.3	16
49	Influence of potassium permanganate pre-oxidation on the interaction of humic acid with cadmium/arsenic. RSC Advances, 2016, 6, 3048-3057.	3.6	6
50	Chemiluminescence determination of human serum albumin based on Co ²⁺ -catalyzed 2-(4-tert-butylphenyl)-4,5-di(2-furyl) imidazole/H ₂ O ₂ system. RSC Advances, 2015, 5, 89569-89576.	3.6	5
51	Oxidation of microcystin-LR in water by ozone combined with UV radiation: The removal and degradation pathway. Chemical Engineering Journal, 2015, 276, 97-105.	12.7	60
52	A novel cementitious microfiltration membrane: mechanisms of pore formation and properties for water permeation. RSC Advances, 2015, 5, 99-108.	3.6	10
53	Fabrication of a low-cost cementitious catalytic membrane for p-chloronitrobenzene degradation using a hybrid ozonation-membrane filtration system. Chemical Engineering Journal, 2015, 262, 904-912.	12.7	31
54	Sensitized chemiluminescence of 2-phenyl-4,5-di(2-furyl)-1H-imidazole/K3Fe(CN)6/propyl gallate system combining with solid-phase extraction for the determination of propyl gallate in edible oil. Food Chemistry, 2014, 159, 445-450.	8.2	13

#	Article	IF	CITATIONS
55	Ozonation degradation of microcystin-LR in aqueous solution: Intermediates, byproducts and pathways. Water Research, 2014, 63, 52-61.	11.3	76