Svetoslav Kolev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9448772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Data supporting the results of the characterization of the phases and structures appearing during the synthesis process of Ba0.5Sr1.5Zn2-xNixFe12O22 by auto-combustion. Data in Brief, 2020, 31, 105803.	0.5	2
2	Structural, Magnetic and Microwave Characterization of Polycrystalline Z-Type Sr3Co2Fe24O41 Hexaferrite. Materials, 2020, 13, 2355.	1.3	6
3	Ni-substitution effect on the properties of Ba0.5Sr1.5Zn2-xNixFe12O22 powders. Journal of Magnetism and Magnetic Materials, 2020, 505, 166725.	1.0	8
4	Microwave Characteristics (Reflection Losses) of Composite Materials Consisting of Magnetic Nanoparticles. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 251-257.	0.2	1
5	Structural and magnetic characterization of Y-type hexaferrite powders prepared by sol-gel auto-combustion and sonochemistry. Journal of Magnetism and Magnetic Materials, 2019, 477, 131-135.	1.0	9
6	Study of the Structural and Magnetic Properties of Co-Substituted Ba2Mg2Fe12O22 Hexaferrites Synthesized by Sonochemical Co-Precipitation. Materials, 2019, 12, 1414.	1.3	11
7	Study of Y-type hexaferrite Ba0.5Sr1.5ZnNiFe12O22 powders. AIP Conference Proceedings, 2019, , .	0.3	1
8	Hexaferrite multiferroics: from bulk to thick films. Journal of Physics: Conference Series, 2018, 992, 012058.	0.3	3
9	A Comparative Study of the Morphology of Y-Type Hexaferrite Powders Obtained by Sol-Gel Auto-Combustion and Ultrasonic Co-precipitation. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 31-36.	0.2	3
10	Nanosized Ferrite Materials for Absorption of and Protection from MW Radiation. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 273-283.	0.2	2
11	Characterization of Y-type hexaferrite Ba <inf>2</inf> Mg <inf>2</inf> Fe <inf>12</inf> O <inf>22</inf> powders. , 2017, , .		2
12	Influence of the preparation methods on the structure and magnetic properties of nanosized Al-substituted barium hexaferrite powders. AIP Conference Proceedings, 2016, , .	0.3	1
13	Study of Quasi-Monophase Y-Type Hexaferrite Ba ₂ Mg ₂ Fe ₁₂ O ₂₂ Powder. Micro and Nanosystems, 2014, 6, 14-20.	0.3	3
14	Influence of the agglomeration in the initial suspension (ferrofluid) on the oriented magnetic structure. Journal of Physics: Conference Series, 2014, 514, 012021.	0.3	2
15	Differences in the structural and magnetic properties of nanosized barium hexaferrite powders prepared by single and double microemulsion techniques. Journal of Alloys and Compounds, 2013, 579, 174-180.	2.8	29
16	Magnetic Properties of Nanosized Ba2Mg2Fe12O22 Powders Obtained by Auto-combustion. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2631-2635.	0.8	17
17	Thermal Treatment Influence on the Magnetic Properties and Degree of Orientation of BaFe12O19 Films. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2819-2824.	0.8	1
18	Magnetic properties of nanosized MgFe ₂ O ₄ powders prepared by auto-combustion. Journal of Physics: Conference Series, 2012, 356, 012048.	0.3	4

Svetoslav Kolev

#	Article	IF	CITATIONS
19	Preparation and characterisation of magnetically ordered columnar structures of barium ferrite particles. Journal of Experimental Nanoscience, 2011, 6, 362-373.	1.3	4
20	Structural and Magnetic Properties and Preparation Techniques of Nanosized M-type Hexaferrite Powders. Springer Proceedings in Physics, 2009, , 183-203.	0.1	16
21	Nanosized Barium Hexaferrite Powders Obtained by a Single Microemulsion Technique. Solid State Phenomena, 2008, 140, 55-60.	0.3	3
22	Microwave Properties of Polymer Composites Containing Combinations of Micro- and Nano-Sized Magnetic Fillers. Journal of Nanoscience and Nanotechnology, 2008, 8, 650-654.	0.9	4
23	Microstructural study and size control of iron oxide nanoparticles produced by microemulsion technique. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1302-1307.	0.8	43
24	Microwave absorption of ferrite powders in a polymer matrix. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1308-1315.	0.8	29
25	Laser Heterodyne Measurement of Photothermal Displacement for Material Surface Characterization. Plasma Processes and Polymers, 2006, 3, 253-256.	1.6	2
26	Phase and structural particularities of nanosized granular inverse spinels. Physica Status Solidi A, 2004, 201, 1001-1010.	1.7	11
27	Crystalline anisotropy and cation distribution in nanosized quasi-spherical ferroxide particles. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1175-E1176.	1.0	11
28	Microstructure and Magnetic Behaviour of Nanosized Fe 3 O 4 Powders and Polycrystalline Films. Monatshefte Für Chemie, 2002, 133, 823-828.	0.9	15
29	Polymer microwave absorber with nanosized ferrite and carbon fillers. , 0, , .		4
30	Structural and Magnetic Properties of Nanosized Barium Hexaferrite Powders Obtained by Microemulsion Technique. Solid State Phenomena, 0, 159, 57-62.	0.3	14