
Roland Foisner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9447955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 2005, 24, 2375-2385.	2.6	697
2	LBR and Lamin A/C Sequentially Tether Peripheral Heterochromatin and Inversely Regulate Differentiation. Cell, 2013, 152, 584-598.	13.5	681
3	Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell, 1993, 73, 1267-1279.	13.5	514
4	Lamins: Nuclear Intermediate Filament Proteins with Fundamental Functions in Nuclear Mechanics and Genome Regulation. Annual Review of Biochemistry, 2015, 84, 131-164.	5.0	455
5	The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. Journal of Cell Science, 2005, 118, 3419-3430.	1.2	371
6	E-cadherin regulates cell growth by modulating proliferation-dependent β-catenin transcriptional activity. Journal of Cell Biology, 2001, 154, 1185-1196.	2.3	307
7	Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutation Research - Reviews in Mutation Research, 2004, 566, 9-20.	2.4	272
8	Lamin-binding Proteins. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000554-a000554.	2.3	228
9	Lamin A/C Binding Protein LAP2α Is Required for Nuclear Anchorage of Retinoblastoma Protein. Molecular Biology of the Cell, 2002, 13, 4401-4413.	0.9	224
10	Epithelial Mesenchymal Transition by c-Fos Estrogen Receptor Activation Involves Nuclear Translocation of β-Catenin and Upregulation of β-Catenin/Lymphoid Enhancer Binding Factor-1 Transcriptional Activity. Journal of Cell Biology, 2000, 148, 173-187.	2.3	208
11	Lamins at the crossroads of mechanosignaling. Genes and Development, 2015, 29, 225-237.	2.7	202
12	LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. Journal of Cell Science, 2004, 117, 6117-6128.	1.2	178
13	Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Human Mutation, 2005, 26, 566-574.	1.1	167
14	Proteins that associate with lamins: Many faces, many functions. Experimental Cell Research, 2007, 313, 2167-2179.	1.2	159
15	A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Research, 2016, 26, 462-473.	2.4	157
16	Review: Lamina-Associated Polypeptide 2 Isoforms and Related Proteins in Cell Cycle-Dependent Nuclear Structure Dynamics. Journal of Structural Biology, 2000, 129, 335-345.	1.3	152
17	Barrier-to-autointegration factor – a BAFfling little protein. Trends in Cell Biology, 2007, 17, 202-208.	3.6	144
18	Lamina-associated polypeptide 2α regulates cell cycle progression and differentiation via the retinoblastoma–E2F pathway. Journal of Cell Biology, 2006, 173, 83-93.	2.3	143

#	Article	IF	CITATIONS
19	Loss of nucleoplasmic LAP2α–lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nature Cell Biology, 2008, 10, 1341-1348.	4.6	141
20	Lamins in the nuclear interior â^' life outside the lamina. Journal of Cell Science, 2017, 130, 2087-2096.	1.2	140
21	LEM2 is a novel MAN1-related inner nuclear membrane protein associated with A-type lamins. Journal of Cell Science, 2005, 118, 5797-5810.	1.2	131
22	Evolvement of LEM proteins as chromatin tethers at the nuclear periphery. Biochemical Society Transactions, 2011, 39, 1735-1741.	1.6	119
23	Nucleoplasmic LAP2α–lamin A complexes are required to maintain a proliferative state in human fibroblasts. Journal of Cell Biology, 2007, 176, 163-172.	2.3	117
24	Breaking and making of the nuclear envelope. Journal of Cellular Biochemistry, 2005, 95, 454-465.	1.2	94
25	Molecular insights into the premature aging disease progeria. Histochemistry and Cell Biology, 2016, 145, 401-417.	0.8	94
26	A-type lamin complexes and regenerative potential: a step towards understanding laminopathic diseases?. Histochemistry and Cell Biology, 2006, 125, 33-41.	0.8	91
27	Nucleoplasmic lamins and their interaction partners, LAP2α, Rb, and BAF, in transcriptional regulation. FEBS Journal, 2007, 274, 1362-1373.	2.2	85
28	Lamins and lamin-associated proteins in aging and disease. Current Opinion in Cell Biology, 2007, 19, 298-304.	2.6	84
29	The transcription factor ZEB1 (Î EF1) represses Plakophilin 3 during human cancer progression. FEBS Letters, 2007, 581, 1617-1624.	1.3	83
30	Functional diversity of LAP2α and LAP2β in postmitotic chromosome association is caused by an α-specific nuclear targeting domain. EMBO Journal, 1999, 18, 6370-6384.	3.5	76
31	Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse. Journal of Clinical Investigation, 2018, 129, 531-545.	3.9	75
32	Dynamic organisation of intermediate filaments and associated proteins during the cell cycle. BioEssays, 1997, 19, 297-305.	1.2	71
33	Lamina-associated polypeptide (LAP)2α and nucleoplasmic lamins in adult stem cell regulation and disease. Seminars in Cell and Developmental Biology, 2014, 29, 116-124.	2.3	70
34	Inhibition of Lamin A/C Attenuates Osteoblast Differentiation and Enhances RANKL-Dependent Osteoclastogenesis. Journal of Bone and Mineral Research, 2009, 24, 78-86.	3.1	58
35	Cell Cycle Dynamics of the Nuclear Envelope. Scientific World Journal, The, 2003, 3, 1-20.	0.8	55
36	Lamin complexes in the nuclear interior control progenitor cell proliferation and tissue homeostasis. Cell Cycle, 2009, 8, 1488-1493.	1.3	52

#	Article	IF	CITATIONS
37	Proliferation of progeria cells is enhanced by lamina-associated polypeptide 2α (LAP2α) through expression of extracellular matrix proteins. Genes and Development, 2015, 29, 2022-2036.	2.7	52
38	Differential nuclear localization and nuclear matrix association of the splicing factors PSF and PTB. Journal of Cellular Biochemistry, 2000, 76, 559-566.	1.2	50
39	Inner nuclear membrane proteins and the nuclear lamina. Journal of Cell Science, 2001, 114, 3791-3792.	1.2	50
40	Distinct Functions of the Unique C Terminus of LAP2α in Cell Proliferation and Nuclear Assembly. Journal of Biological Chemistry, 2002, 277, 18898-18907.	1.6	49
41	Barrier-to-Autointegration Factor (BAF) involvement in prelamin A-related chromatin organization changes. Oncotarget, 2016, 7, 15662-15677.	0.8	49
42	The endonuclease Ankle1 requires its LEM and GIY-YIG motifs for DNA cleavage in vivo. Journal of Cell Science, 2012, 125, 1048-1057.	1.2	47
43	LAP2α-binding protein LINT-25 is a novel chromatin-associated protein involved in cell cycle exit. Journal of Cell Science, 2007, 120, 737-747.	1.2	41
44	Defective skeletal muscle growth in lamin A/C-deficient mice is rescued by loss of Lap2α. Human Molecular Genetics, 2013, 22, 2852-2869.	1.4	41
45	A-type lamin networks in light of laminopathic diseases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 661-674.	1.9	40
46	Loss of LAP2α Delays Satellite Cell Differentiation and Affects Postnatal Fiber-Type Determination. Stem Cells, 2010, 28, 480-488.	1.4	40
47	Lamina-Associated Polypeptide 2α Loss Impairs Heart Function and Stress Response in Mice. Circulation Research, 2010, 106, 346-353.	2.0	40
48	Lamina-Associated Polypeptide (LAP)2α and Other LEM Proteins in Cancer Biology. Advances in Experimental Medicine and Biology, 2014, 773, 143-163.	0.8	40
49	The structural and gene expression hypotheses in laminopathic diseases—not so different after all. Molecular Biology of the Cell, 2019, 30, 1786-1790.	0.9	39
50	Prelamin A is involved in early steps of muscle differentiation. Experimental Cell Research, 2008, 314, 3628-3637.	1.2	35
51	Muscle dystrophy-causing ΔK32 lamin A/C mutant does not impair functions of nucleoplasmic LAP2α - lamin A/C complexes in mice. Journal of Cell Science, 2013, 126, 1753-62.	1.2	31
52	A nuclear ubiquitin-proteasomal pathway targets inner nuclear membrane protein Asi2 for degradation. Journal of Cell Science, 2014, 127, 3603-13.	1.2	30
53	Two-dimensional electrophoresis reveals a nuclear matrix-associated nucleolin complex of basic isoelectric point. Electrophoresis, 1997, 18, 2645-2653.	1.3	29
54	Apolipoprotein Aâ€I production by chicken granulosa cells. FASEB Journal, 1998, 12, 897-903.	0.2	24

#	Article	IF	CITATIONS
55	Degradation-mediated protein quality control at the inner nuclear membrane. Nucleus, 2016, 7, 41-49.	0.6	23
56	Atypical Ubiquitylation in Yeast Targets Lysine-less Asi2 for Proteasomal Degradation. Journal of Biological Chemistry, 2015, 290, 2489-2495.	1.6	22
57	High Mobility Group Protein N5 (HMGN5) and Lamina-associated Polypeptide 21± (LAP21±) Interact and Reciprocally Affect Their Genome-wide Chromatin Organization. Journal of Biological Chemistry, 2013, 288, 18104-18109.	1.6	21
58	Nuclear envelope localization of LEMD2 is developmentally dynamic and lamin A/C dependent yet insufficient for heterochromatin tethering. Differentiation, 2017, 94, 58-70.	1.0	21
59	A Phosphorylation Cluster in the Chromatin-binding Region Regulates Chromosome Association of LAP2α. Journal of Biological Chemistry, 2004, 279, 35813-35821.	1.6	20
60	LAP2alpha maintains a mobile and low assembly state of A-type lamins in the nuclear interior. ELife, 2021, 10, .	2.8	20
61	Cdc48 and Ubx1 participate in an inner nuclear membrane associated degradation pathway that governs the turnover of Asi1. Journal of Cell Science, 2016, 129, 3770-3780.	1.2	19
62	Lamins: â€~structure goes cycling'. Biochemical Society Transactions, 2010, 38, 301-306.	1.6	17
63	Monoclonal Antibodies Specific for Disease-Associated Point-Mutants: Lamin A/C R453W and R482W. PLoS ONE, 2010, 5, e10604.	1.1	16
64	Comparative Interactome Analysis of Emerin, MAN1 and LEM2 Reveals a Unique Role for LEM2 in Nucleotide Excision Repair. Cells, 2020, 9, 463.	1.8	16
65	Multiple novel functions of Lamina associated polypeptide 2α in striated muscle. Nucleus, 2010, 1, 397-401.	0.6	15
66	Nucleoplasmic lamins define growth-regulating functions of lamina-associated polypeptide 2α in progeria cells. Journal of Cell Science, 2018, 131, .	1.2	14
67	The GIY-YIG Type Endonuclease Ankyrin Repeat and LEM Domain-Containing Protein 1 (ANKLE1) Is Dispensable for Mouse Hematopoiesis. PLoS ONE, 2016, 11, e0152278.	1.1	14
68	Lco1 is a novel widely expressed lamin-binding protein in the nuclear interior. Experimental Cell Research, 2004, 298, 499-511.	1.2	13
69	Lamina-associated Polypeptide 2-α Forms Homo-trimers via Its C Terminus, and Oligomerization Is Unaffected by a Disease-causing Mutation. Journal of Biological Chemistry, 2007, 282, 6308-6315.	1.6	11
70	141st ENMC International Workshop Inaugural Meeting of the EURO-Laminopathies Project Nuclear Envelope-linked Rare Human Diseases: From Molecular Pathophysiology towards Clinical Applications 10–12 March 2006, Naarden, The Netherlands. Neuromuscular Disorders, 2007, 17, 655-660.	0.3	11
71	Endothelial and systemic upregulation of miR-34a-5p fine-tunes senescence in progeria. Aging, 2022, 14, 195-224.	1.4	9
72	Editor's Corner. Nucleus, 2015, 6, 1-1.	0.6	8

0.6 8

#	Article	IF	CITATIONS
73	LAP2α preserves genome integrity through assisting RPA deposition on damaged chromatin. Genome Biology, 2022, 23, 64.	3.8	8
74	Nucleo-cytoplasmic shuttling of the endonuclease ankyrin repeats and LEM domain-containing protein 1 (Ankle1) is mediated by canonical nuclear export- and nuclear import signals. BMC Cell Biology, 2016, 17, 23.	3.0	6
75	Lamina-associated polypeptide 2α is required for intranuclear MRTF-A activity. Scientific Reports, 2022, 12, 2306.	1.6	3
76	In Vitro Techniques. , 2006, , 201-378.		2
77	Lamins reach out to novel functions in DNA damage repair. Cell Cycle, 2011, 10, 3426-3426.	1.3	2
78	Editorial for the SEB Florence special issue: functional organisation of the nuclear periphery. Nucleus, 2019, 10, 167-168.	0.6	1
79	Editor's Corner. Nucleus, 2015, 6, 165-165.	0.6	0
80	Editorial overview: The cell nucleus: New discoveries on nuclear structure, dynamics and function. Current Opinion in Cell Biology, 2017, 46, iv-vi.	2.6	0