Zhenhuan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9447850/publications.pdf

Version: 2024-02-01

		623734	839539
19	799	14	18
papers	citations	h-index	g-index
19	19	19	858
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mussel-inspired modification of PPS membrane to separate and remove the dyes from the wastewater. Chemical Engineering Journal, 2018, 341, 371-382.	12.7	131
2	Robust Graphene@PPS Fibrous Membrane for Harsh Environmental Oil/Water Separation and All-Weather Cleanup of Crude Oil Spill by Joule Heat and Photothermal Effect. ACS Applied Materials & Logical Representation & Logical	8.0	98
3	Bio-inspired robust superhydrophobic-superoleophilic polyphenylene sulfide membrane for efficient oil/water separation under highly acidic or alkaline conditions. Journal of Hazardous Materials, 2019, 373, 11-22.	12.4	95
4	In-situ transformation obtained defect-rich porous hollow CuO@CoZn-LDH nanoarrays as self-supported electrode for highly efficient overall water splitting. Chemical Engineering Journal, 2021, 414, 128809.	12.7	64
5	Selective oxidation of 5-hydroxymethylfurfural with H ₂ O ₂ catalyzed by a molybdenum complex. Green Chemistry, 2016, 18, 2122-2128.	9.0	63
6	Nitrogen and fluorine hybridization state tuning in hierarchical honeycomb-like carbon nanofibers for optimized electrocatalytic ORR in alkaline and acidic electrolytes. Journal of Power Sources, 2019, 413, 376-383.	7.8	52
7	Rational design of hollow oxygen deficiency-enriched NiFe2O4@N/rGO as bifunctional electrocatalysts for overall water splitting. Journal of Energy Chemistry, 2021, 54, 595-603.	12.9	52
8	Preparation of a polyphenylene sulfide membrane from a ternary polymer/solvent/non-solvent system by thermally induced phase separation. RSC Advances, 2017, 7, 10503-10516.	3.6	44
9	Furan-based co-polyesters with enhanced thermal properties: poly(1,4-butylene-co-1,4-cyclohexanedimethylene-2,5-furandicarboxylic acid). RSC Advances, 2016, 6, 27632-27639.	3.6	40
10	Preparation, characterization of PPS micro-porous membranes and their excellent performance in vacuum membrane distillation. Journal of Membrane Science, 2018, 556, 107-117.	8.2	39
11	Advanced Trifunctional Electrocatalysis with Cu-, N-, S-Doped Defect-Rich Porous Carbon for Rechargeable Zn–Air Batteries and Self-Driven Water Splitting. ACS Sustainable Chemistry and Engineering, 2021, 9, 13324-13336.	6.7	36
12	Co/Co–N/Co-O Rooted on rGO Hybrid BCN Nanotube Arrays as Efficient Oxygen Electrocatalyst for Zn–Air Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 17249-17258.	8.0	21
13	Effects of hydrogen bonding between MWCNT and PPS on the properties of PPS/MWCNT composites. RSC Advances, 2016, 6, 92378-92386.	3.6	17
14	Fe–Nx–C sites decorated porous carbon nanorods with huge specific surface area boost oxygen reduction catalysis for Zn-air batteries. Journal of Alloys and Compounds, 2021, 868, 159015.	5.5	16
15	NGO/PA layer with disordered arrangement hybrid PPS composite membrane for desalination. Desalination, 2020, 479, 114211.	8.2	11
16	Highly Dispersed Co-, N-, S-Doped Topological Defect-Rich Hollow Carbon Nanoboxes as Superior Bifunctional Oxygen Electrocatalysts for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2022, 14, 25427-25438.	8.0	10
17	A Superhydrophilic and Anti-Biofouling Polyphenylene Sulfide Microporous Membrane with Quaternary Ammonium Salts. Macromolecular Research, 2018, 26, 800-807.	2.4	5
18	Herbal residue-derived N, P co-doped porous hollow carbon spheres as high-performance electrocatalysts for oxygen reduction reaction under both alkaline and acidic conditions. Microporous and Mesoporous Materials, 2022, 329, 111556.	4.4	5

ZHENHUAN LI

#	Article	IF	CITATIONS
19	2,5-Furandicarboxylic acid based polyamide membrane. Journal of Membrane Science, 2022, 652, 120488.	8.2	O