
Pavel Janda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9447115/publications.pdf Version: 2024-02-01

DAVEL LANDA

#	Article	IF	CITATIONS
1	Historical mixed-severity disturbances shape current diameter distributions of primary temperate Norway spruce mountain forests in Europe. Forest Ecology and Management, 2022, 503, 119772.	3.2	8
2	The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 2022, 13, 28.	12.8	66
3	Climate-change-driven growth decline of European beech forests. Communications Biology, 2022, 5, 163.	4.4	89
4	Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nature Communications, 2022, 13, 2015.	12.8	8
5	Spatial and temporal extents of natural disturbances differentiate deadwood-inhabiting fungal communities in spruce primary forest ecosystems. Forest Ecology and Management, 2022, 517, 120272.	3.2	5
6	Disturbance history drives current compositional and diversity patterns of primary Picea abies (L.) Karst. forest vegetation. Forest Ecology and Management, 2022, 520, 120387.	3.2	6
7	Historical Disturbances Determine Current Taxonomic, Functional and Phylogenetic Diversity of Saproxylic Beetle Communities in Temperate Primary Forests. Ecosystems, 2021, 24, 37-55.	3.4	35
8	Natural dynamics of temperate mountain beech-dominated primary forests in Central Europe. Forest Ecology and Management, 2021, 479, 118522.	3.2	21
9	Historical natural disturbances shape spruce primary forest structure and indirectly influence bird assemblage composition. Forest Ecology and Management, 2021, 481, 118647.	3.2	12
10	Disturbance history is a key driver of tree life span in temperate primary forests. Journal of Vegetation Science, 2021, 32, e13069.	2.2	13
11	Tree canopy accession strategy changes along the latitudinal gradient of temperate Northeast Asia. Global Ecology and Biogeography, 2021, 30, 738-748.	5.8	8
12	The impact of natural disturbance dynamics on lichen diversity and composition in primary mountain spruce forests. Journal of Vegetation Science, 2021, 32, e13087.	2.2	10
13	Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211631.	2.6	19
14	Biomass carbon accumulation patterns throughout stand development in primary uneven-aged forest driven by mixed-severity natural disturbances. Forest Ecology and Management, 2020, 455, 117676.	3.2	9
15	Relationships between Structural Indices and Conventional Stand Attributes in an Old-Growth Forest in Southeast Europe. Forests, 2020, 11, 4.	2.1	24
16	Contrasting patterns of natural mortality in primary Picea forests of the Carpathian Mountains. Forest Ecology and Management, 2020, 457, 117734.	3.2	16
17	Moderate- to High-Severity Disturbances Shaped the Structure of Primary Picea Abies (L.) Karst. Forest in the Southern Carpathians. Forests, 2020, 11, 1315.	2.1	5
18	Quantifying natural disturbances using a largeâ€scale dendrochronological reconstruction to guide forest management. Ecological Applications, 2020, 30, e02189.	3.8	27

Pavel Janda

#	Article	IF	CITATIONS
19	Molecular assessment of natural disturbance regime in a temperate swamp forest. Forest Ecology and Management, 2020, 460, 117821.	3.2	2
20	Drivers of basal area variation across primary late-successional Picea abies forests of the Carpathian Mountains. Forest Ecology and Management, 2019, 435, 196-204.	3.2	19
21	The climatic drivers of primary <i>Picea</i> forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biology, 2019, 25, 3136-3150.	9.5	45
22	Disentangling the multi-faceted growth patterns of primary Picea abies forests in the Carpathian arc. Agricultural and Forest Meteorology, 2019, 271, 214-224.	4.8	20
23	Patterns of forest dynamics in a secondary old-growth beech-dominated forest in the Jizera Mountains Beech Forest Reserve, Czech Republic. IForest, 2019, 12, 17-26.	1.4	7
24	Largeâ€scale disturbance legacies and the climate sensitivity of primary <i>Picea abies</i> forests. Global Change Biology, 2018, 24, 2169-2181.	9.5	79
25	Profile of tree-related microhabitats in European primary beech-dominated forests. Forest Ecology and Management, 2018, 429, 363-374.	3.2	45
26	Influence of sampling and disturbance history on climatic sensitivity of temperature-limited conifers. Holocene, 2018, 28, 1574-1587.	1.7	26
27	Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth. Frontiers in Plant Science, 2018, 9, 1964.	3.6	117
28	Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. Forest Ecology and Management, 2017, 405, 210-218.	3.2	35
29	Longâ€ŧerm responses of canopy–understorey interactions to disturbance severity in primary <i>Picea abies</i> forests. Journal of Vegetation Science, 2017, 28, 1128-1139.	2.2	16
30	More ways than one: Mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways. Forest Ecology and Management, 2017, 406, 410-426.	3.2	78
31	A matter of time: self-regulated tree regeneration in a natural Norway spruce (Picea abies) forest at Mt. Brocken, Germany. European Journal of Forest Research, 2017, 136, 907-921.	2.5	7
32	The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. Forest Ecology and Management, 2017, 388, 67-78.	3.2	103
33	Past disturbances and intraspecific competition as drivers of spatial pattern in primary spruce forests. Ecosphere, 2017, 8, e02037.	2.2	8
34	A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.	9.5	394
35	The legacy of disturbance on individual tree and stand-level aboveground biomass accumulation and stocks in primary mountain Picea abies forests. Forest Ecology and Management, 2016, 373, 108-115.	3.2	30
36	Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. Forest Ecology and Management, 2016, 363, 169-178.	3.2	75

Pavel Janda

#	Article	IF	CITATIONS
37	Legacy of Pre-Disturbance Spatial Pattern Determines Early Structural Diversity following Severe Disturbance in Montane Spruce Forests. PLoS ONE, 2015, 10, e0139214.	2.5	35
38	Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. Forest Ecology and Management, 2015, 354, 77-86.	3.2	104
39	Carbon pools in a montane old-growth Norway spruce ecosystem in Bohemian Forest: Effects of stand age and elevation. Forest Ecology and Management, 2015, 346, 106-113.	3.2	42
40	Effects of topography and forest stand dynamics on soil morphology in three natural Picea abies mountain forests. Plant and Soil, 2015, 392, 57-69.	3.7	19
41	Old World megadroughts and pluvials during the Common Era. Science Advances, 2015, 1, e1500561.	10.3	403
42	Three hundred years of spatio-temporal development in a primary mountain Norway spruce stand in the Bohemian Forest, central Europe. Forest Ecology and Management, 2014, 330, 304-311.	3.2	19
43	Landscapeâ€level variability in historical disturbance in primary <i><scp>P</scp>icea abies</i> mountain forests of the <scp>E</scp> astern <scp>C</scp> arpathians, <scp>R</scp> omania. Journal of Vegetation Science, 2014, 25, 386-401.	2.2	99
44	A mixed severity disturbance regime in the primary Picea abies (L.) Karst. forests of the Ukrainian Carpathians. Forest Ecology and Management, 2014, 334, 144-153.	3.2	78
45	Comment on "Opinion paper: Forest management and biodiversity": the role of protected areas is greater than the sum of its number of species. Web Ecology, 2014, 14, 61-64.	1.6	5
46	Dendrochronological reconstruction of the disturbance history and past development of the mountain Norway spruce in the Bohemian Forest, central Europe. Forest Ecology and Management, 2013, 295, 59-68.	3.2	43
47	Natural regeneration in Central-European subalpine spruce forests: Which logs are suitable for seedling recruitment?. Forest Ecology and Management, 2012, 266, 254-262.	3.2	73
48	Disturbance history of an oldâ€growth subâ€alpine <scp><i>P</i></scp> <i>icea abies</i> stand in the <scp>B</scp> ohemian Forest, <scp>C</scp> zech <scp>R</scp> epublic. Journal of Vegetation Science, 2012, 23, 86-97.	2.2	113
49	Density and height structure of seedlings in subalpine spruce forests of Central Europe: logs vs. stumps as a favourable substrate. Silva Fennica, 2011, 45, .	1.3	20
50	Natural development and regeneration of a Central European montane spruce forest. Forest Ecology and Management, 2010, 260, 707-714.	3.2	136