List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9447061/publications.pdf Version: 2024-02-01

EMDIIIIAH YASAD

#	Article	IF	CITATIONS
1	Optical solitons in birefringent fibers with Kaup–Newell equation using two integration schemes. Optik, 2022, 251, 167992.	2.9	22
2	Cubic–quartic optical solitons in birefringent fibers with Kaup–Newell equation using different arithmatic algorithms. Optik, 2022, 255, 168686.	2.9	5
3	Highly dispersive optical soliton molecules to dual-mode nonlinear SchrĶdinger wave equation in cubic law media. Optical and Quantum Electronics, 2022, 54, 1.	3.3	13
4	On the Lie symmetry analysis, analytic series solutions, and conservation laws of the time fractional Belousov–Zhabotinskii system. Nonlinear Dynamics, 2022, 109, 2997-3008.	5.2	7
5	Breather-type and multi-wave solutions for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si11.svg"> <mml:mrow> <mml:mo> (</mml:mo> <mml:mn>2 </mml:mn> <mml:mo) 0.784314<="" 1="" etqq1="" td="" tj=""><td>∔rg⊵τ2∕Ον€</td><td>erlock 10 Tf 5</td></mml:mo)></mml:mrow></mml:math 	∔rg ⊵ τ2∕Ον€	erlo c k 10 Tf 5
6	nonlocal Gardner equation. Applied Mathematics and Computation, 2021, 390, 125663. The generalized exponential rational function and Elzaki–Adomian decomposition method for the Heisenberg ferromagnetic spin chain equation. Modern Physics Letters B, 2021, 35, 2150200.	1.9	5
7	Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by sine-Gordon equation approach. Journal of Optics (India), 2021, 50, 322-329.	1.7	38
8	Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model. Optik, 2021, 233, 166385.	2.9	16
9	Multi-wave, breather and interaction solutions to (3+1) dimensional Vakhnenko–Parkes equation arising at propagation of high-frequency waves in a relaxing medium. Journal of Taibah University for Science, 2021, 15, 666-678.	2.5	57
10	Propagation of dark-bright soliton and kink wave solutions of fluidized granular matter model arising in industrial applications. International Journal of Nonlinear Sciences and Numerical Simulation, 2021, .	1.0	0
11	Optical pulses with Kundu-Mukherjee-Naskar model in fiber communication systems. Chinese Journal of Physics, 2020, 64, 183-193.	3.9	47
12	Optical soliton molecules of Lakshmanan–Porsezian–Daniel model in birefringent fibers by trial equation technique. Optik, 2020, 203, 162690.	2.9	14
13	A third-order nonlinear SchrĶdinger equation: the exact solutions, group-invariant solutions and conservation laws. Journal of Taibah University for Science, 2020, 14, 585-597.	2.5	116
14	On the multi-waves, interaction and Peregrine-like rational solutions of perturbed Radhakrishnan–Kundu–Lakshmanan equation. Physica Scripta, 2020, 95, 085205.	2.5	90
15	Optical solitons in fiber Bragg gratings with generalized anti-cubic nonlinearity by extended auxiliary equation. Chinese Journal of Physics, 2020, 65, 613-628.	3.9	21
16	On the exact solutions of nonlinear evolution equations by the improved \$\$an (varphi) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf	50 142 Td (/2
17	Optical solitons of Gerdjikov–Ivanov equation with four-wave mixing terms in birefringent fibers using trial equation scheme. Optik, 2019, 182, 1163-1169.	2.9	7

#	Article	IF	CITATIONS
19	Extended Transformed Rational Function Method to Nonlinear Evolution Equations. International Journal of Nonlinear Sciences and Numerical Simulation, 2019, 20, 691-701.	1.0	13
20	The Logarithmic (1+1)\$oldsymbol{(1+1)}\$-Dimensional KdV-Like and (2+1)\$oldsymbol{(2+1)}\$-Dimensional KP-Like Equations: Lie Group Analysis, Conservation Laws and Double Reductions. International Journal of Nonlinear Sciences and Numerical Simulation, 2019, 20, 747-755.	1.0	3
21	Optical solitons in DWDM system with trial equation integration architecture. Optik, 2019, 182, 211-218.	2.9	10
22	Optical solitons to Schrödinger–Hirota equation in DWDM system with trial equation integration architecture. Optik, 2019, 182, 275-281.	2.9	10
23	Complexiton solutions and soliton solutions: \$\$(2+1)\$\$ (2 + 1) -dimensional Date–Jimbo–Kashiwara–Miwa equation. Pramana - Journal of Physics, 2019, 92, 1.	1.8	24
24	Optical soliton perturbation in parabolic law medium having weak non-local nonlinearity by a couple of strategic integration architectures. Results in Physics, 2019, 13, 102334.	4.1	6
25	Optical solitons to Sasa-Satsuma model with modified simple equation approach. Optik, 2019, 184, 271-276.	2.9	35
26	Optical soliton molecules of Manakov model by trial equation technique. Optik, 2019, 185, 1146-1151.	2.9	26
27	Optical soliton molecules of Manakov model by modified simple equation technique. Optik, 2019, 185, 1182-1188.	2.9	16
28	Optical solitons to Kundu–Mukherjee–Naskar model in birefringent fibers with trial equation approach. Optik, 2019, 183, 1026-1031.	2.9	30
29	Sub pico-second pulses in mono-mode optical fibers with Triki-Biswas model using trial equation architecture. Optik, 2019, 183, 463-466.	2.9	33
30	Optical solitons to Kundu–Mukherjee–Naskar model in birefringent fibers with modified simple equation approach. Optik, 2019, 184, 121-127.	2.9	25
31	Optical solitons of Gerdjikov–Ivanov equation with four-wave mixing terms in birefringent fibers by modified simple equation methodology. Optik, 2019, 182, 745-754.	2.9	7
32	Optical solitons to Biswas-Arshed model in birefringent fibers using modified simple equation architecture. Optik, 2019, 182, 1149-1162.	2.9	43
33	Optical solitons to Kundu–Mukherjee–Naskar model with modified simple equation approach. Optik, 2019, 184, 247-252.	2.9	48
34	Optical solitons to Chen–Lee–Liu model in birefringent fibers with modified simple equation approach. Optik, 2019, 183, 612-618.	2.9	15
35	Optical solitons in DWDM technology with four-wave mixing by trial equation integration architecture. Optik, 2019, 182, 625-632.	2.9	14
36	Optical solitons to Chen–Lee–Liu model with trial equation approach. Optik, 2019, 183, 849-853.	2.9	23

#	Article	IF	CITATIONS
37	Optical solitons to Chen–Lee–Liu model in birefringent fibers with trial equation approach. Optik, 2019, 183, 881-886.	2.9	15
38	Optical solitons to Chen–Lee–Liu model with modified simple equation approach. Optik, 2019, 183, 792-796.	2.9	11
39	Optical solitons to Kundu–Mukherjee–Naskar model with trial equation approach. Optik, 2019, 183, 1061-1065.	2.9	37
40	Optical solitons to Sasa–Satsuma model in birefringent fibers with trial equation approach. Optik, 2019, 185, 269-274.	2.9	14
41	Optical solitons to Sasa-Satsuma model in birefringent fibers with modified simple equation approach. Optik, 2019, 184, 197-204.	2.9	13
42	Optical solitons to Sasa–Satsuma model with trial equation approach. Optik, 2019, 184, 70-74.	2.9	50
43	Optical solitons of Biswas-Arshed equation in birefringent fibers by trial equation technique. Optik, 2019, 182, 810-820.	2.9	46
44	Optical solitons to Gerdjikov–Ivanov equation in birefringent fibers with trial equation integration architecture. Optik, 2019, 182, 349-355.	2.9	12
45	Optical solitons of Biswas–Arshed equation by trial equation technique. Optik, 2019, 182, 876-883.	2.9	60
46	Bright, dark and singular optical solitons to Kundu–Eckhaus equation having four-wave mixing in the context of birefringent fibers by using of trial equation methodology. Optik, 2019, 182, 393-399.	2.9	14
47	Optical solitons of Biswas-Arshed equation by modified simple equation technique. Optik, 2019, 182, 986-994.	2.9	47
48	Soliton solutions to the non-local Boussinesq equation by multiple exp-function scheme and extended Kudryashov's approach. Pramana - Journal of Physics, 2019, 92, 1.	1.8	9
49	Optical solitons to Kundu–Eckhaus equation in the context of birefringent fibers by using of trial equation methodology. Optik, 2019, 182, 105-109.	2.9	10
50	Optical solitons in birefringent fibers with weak non-local nonlinearity using two forms of integration architecture. Optik, 2019, 178, 669-680.	2.9	14
51	Optical soliton molecules in birefringent fibers having weak non-local nonlinearity and four-wave mixing with a couple of strategic integration architectures. Optik, 2019, 179, 927-940.	2.9	14
52	Optical solitons of Gerdjikov–Ivanov equation in birefringent fibers with modified simple equation scheme. Optik, 2019, 182, 424-432.	2.9	5
53	A Novel Scheme for Nonlinear Evolution Equations Using Symbolic Computations. Journal of Applied Nonlinear Dynamics, 2019, 8, 463-473.	0.3	5
54	Algebraic Traveling Wave Solutions to Nonlinear Evolution Equations. Journal of Applied Nonlinear Dynamics, 2019, 8, 557-567.	0.3	1

#	Article	IF	CITATIONS
55	Solitons for perturbed Gerdjikov–Ivanov equation in optical fibers and PCF by extended Kudryashov's method. Optical and Quantum Electronics, 2018, 50, 1.	3.3	48
56	Dispersive optical solitons with Schrödinger–Hirota model by trial equation method. Optik, 2018, 162, 35-41.	2.9	47
57	Dispersive optical solitons with differential group delay by a couple of integration schemes. Optik, 2018, 162, 108-120.	2.9	17
58	Optical solitons with differential group delay and four-wave mixing using two integration procedures. Optik, 2018, 167, 170-188.	2.9	19
59	Sub pico-second pulses in mono-mode optical fibers with Kaup–Newell equation by a couple of integration schemes. Optik, 2018, 167, 121-128.	2.9	130
60	Optical solitons for Lakshmanan–Porsezian–Daniel model with dual-dispersion by trial equation method. Optik, 2018, 168, 432-439.	2.9	63
61	Optical soliton perturbation with resonant nonlinear SchrĶdinger's equation having full nonlinearity by modified simple equation method. Optik, 2018, 160, 33-43.	2.9	51
62	Optical solitons for Lakshmanan–Porsezian–Daniel model by modified simple equation method. Optik, 2018, 160, 24-32.	2.9	161
63	Optical soliton perturbation with complex Ginzburg–Landau equation using trial solution approach. Optik, 2018, 160, 44-60.	2.9	47
64	Optical solitons with differential group delay by trial equation method. Optik, 2018, 160, 116-123.	2.9	24
65	Optical soliton perturbation with full nonlinearity for Gerdjikov–Ivanov equation by trial equation method. Optik, 2018, 157, 1214-1218.	2.9	43
66	Optical soliton perturbation with Gerdjikov–Ivanov equation by modified simple equation method. Optik, 2018, 157, 1235-1240.	2.9	52
67	Optical soliton perturbation with full nonlinearity by trial equation method. Optik, 2018, 157, 1366-1375.	2.9	36
68	Conservation laws for perturbed solitons in optical metamaterials. Results in Physics, 2018, 8, 898-902.	4.1	9
69	Optical soliton perturbation with full nonlinearity for Kundu–Eckhaus equation by modified simple equation method. Optik, 2018, 157, 1376-1380.	2.9	82
70	Optical soliton perturbation for complex Ginzburg–Landau equation with modified simple equation method. Optik, 2018, 158, 399-415.	2.9	80
71	A (2+1)-dimensional breaking soliton equation: Solutions and conservation laws. Chaos, Solitons and Fractals, 2018, 107, 146-155.	5.1	42
72	New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method. Results in Physics, 2018, 9, 1666-1672.	4.1	71

#	Article	IF	CITATIONS
73	Optical solitons with differential group delay for coupled Fokas–Lenells equation using two integration schemes. Optik, 2018, 165, 74-86.	2.9	121
74	Optical soliton perturbation for Radhakrishnan–Kundu–Lakshmanan equation with a couple of integration schemes. Optik, 2018, 163, 126-136.	2.9	128
75	Optical solitons and conservation law of Kundu–Eckhaus equation. Optik, 2018, 154, 551-557.	2.9	139
76	Perturbed optical solitons with spatio-temporal dispersion in (2 + 1)-dimensions by extended Kudryashov method. Optik, 2018, 158, 1-14.	2.9	39
77	Optical soliton perturbation with quadratic-cubic nonlinearity using a couple of strategic algorithms. Chinese Journal of Physics, 2018, 56, 1990-1998.	3.9	37
78	Optical soliton solutions to Fokas-lenells equation using some different methods. Optik, 2018, 173, 21-31.	2.9	132
79	On the exact solutions, lie symmetry analysis, and conservation laws of Schamel–Korteweg–de Vries equation. Mathematical Methods in the Applied Sciences, 2017, 40, 3927-3936.	2.3	16
80	An extended Korteweg–de Vries equation: multi-soliton solutions and conservation laws. Nonlinear Dynamics, 2017, 90, 1571-1579.	5.2	14
81	Conservation laws for Gerdjikov-Ivanov equation in nonlinear fiber optics and PCF. Optik, 2017, 148, 209-214.	2.9	72
82	Nonlinear Schrödinger equations with spatio-temporal dispersion in Kerr, parabolic, power and dual power law media: A novel extended Kudryashov's algorithm and soliton solutions. Results in Physics, 2017, 7, 3116-3123.	4.1	22
83	Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method. Superlattices and Microstructures, 2017, 111, 487-498.	3.1	52
84	Multiple exp-function method for soliton solutions of nonlinear evolution equations. Chinese Physics B, 2017, 26, 070201.	1.4	22
85	A multiple exp-function method for the three model equations of shallow water waves. Nonlinear Dynamics, 2017, 89, 2291-2297.	5.2	30
86	On the conservation laws of modified KdV-KP equation. Filomat, 2017, 31, 1483-1490.	0.5	2
87	The G ′ / G , 1 / G \$oldsymbol {left (G^{prime }/G,1/Gight)}\$ -expansion method for solving nonlinear space–time fractional differential equations. Pramana - Journal of Physics, 2016, 87, 1.	1.8	25
88	First integrals and analytical solutions of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. Pramana - Journal of Physics, 2016, 87, 1.	1.8	3
89	Nonlinear self adjointness, conservation laws and exact solutions of ill-posed Boussinesq equation. Open Physics, 2016, 14, 37-43.	1.7	20
90	A Procedure to Construct Conservation Laws of Nonlinear Evolution Equations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2016, 71, 475-480.	1.5	4

#	Article	IF	CITATIONS
91	Lie symmetry analysis, conservation laws and exact solutions of the seventh-order time fractional Sawada–Kotera–Ito equation. Results in Physics, 2016, 6, 322-328.	4.1	59
92	A procedure on the first integrals of second-order nonlinear ordinary differential equations. European Physical Journal Plus, 2015, 130, 1.	2.6	2
93	Conservation Laws and Soliton Solutions of the (1+1)-Dimensional Modified Improved Boussinesq Equation. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2015, 70, 669-672.	1.5	8
94	On the conservation laws of Derrida–Lebowitz–Speer–Spohn equation. Communications in Nonlinear Science and Numerical Simulation, 2015, 22, 1297-1304.	3.3	9
95	On the Conservation Laws and Exact Solutions of a Modified Hunter-Saxton Equation. Advances in Mathematical Physics, 2014, 2014, 1-6.	0.8	2
96	A Short Note on Nonlocal Transformations and First Integrals for Certain Nonlinear Oscillator Equations. Abstract and Applied Analysis, 2013, 2013, 1-3.	0.7	0
97	Advances in Lie Groups and Applications in Applied Sciences. Abstract and Applied Analysis, 2013, 2013, 1-2.	0.7	0
98	<i>λ</i> â€symmetries, nonlocal transformations and first integrals to a class of Painlevé–Gambier equations. Mathematical Methods in the Applied Sciences, 2012, 35, 684-692.	2.3	8
99	Group properties and conservation laws for nonlocal shallow water wave equation. Applied Mathematics and Computation, 2011, 218, 974-979.	2.2	12
100	On symmetries, conservation laws and invariant solutions of the foam-drainage equation. International Journal of Non-Linear Mechanics, 2011, 46, 357-362.	2.6	26
101	Integrating Factors and First Integrals for Liénard Type and Frequency-Damped Oscillators. Mathematical Problems in Engineering, 2011, 2011, 1-10.	1.1	10
102	Application of the Composite Variational Principle to Shallow Water Equations. , 2011, , 73-78.		0
103	New travelling wave solutions to the Ostrovsky equation. Applied Mathematics and Computation, 2010, 216, 3191-3194.	2.2	20
104	Invariant solutions and conservation laws to nonconservative FP equation. Computers and Mathematics With Applications, 2010, 59, 3203-3210.	2.7	15
105	On the conservation laws and invariant solutions of the mKdV equation. Journal of Mathematical Analysis and Applications, 2010, 363, 174-181.	1.0	31
106	Conservation laws for one-layer shallow water wave systems. Nonlinear Analysis: Real World Applications, 2010, 11, 838-848.	1.7	27
107	Conservation laws for a class of soil water equations. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 3193-3200.	3.3	10
108	On the conservation laws and traveling wave solutions to the BBM equation. Journal of Interdisciplinary Mathematics, 2010, 13, 77-86.	0.7	0

#	Article	IF	CITATIONS
109	Application of the Jacobi method and integrating factors to a class of Painlevé–Gambier equations. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 295202.	2.1	6
110	Variational principles and conservation laws toÂtheÂBurridge–Knopoff equation. Nonlinear Dynamics, 2008, 54, 307-312.	5.2	16