Gary R Hime

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9446937/publications.pdf

Version: 2024-02-01

304368 276539 54 1,820 22 41 citations h-index g-index papers 56 56 56 2482 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Isolation of a Candidate Human Telomerase Catalytic Subunit Gene, Which Reveals Complex Splicing Patterns in Different Cell Types. Human Molecular Genetics, 1997, 6, 2011-2019.	1.4	524
2	Glycoprotein E2 of Classical Swine Fever Virus: Expression in Insect Cells and Identification as a Ribonuclease. Virology, 1994, 200, 558-565.	1.1	105
3	The RNA-binding protein Musashi is required intrinsically to maintain stem cell identity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8402-8407.	3.3	100
4	WNT/Frizzled signaling in eye development and disease. Frontiers in Bioscience - Landmark, 2006, 11 , 2442.	3.0	71
5	Cytoplasmic male sterility in Drosophila melanogaster associated with a mitochondrial CYTB variant. Heredity, 2011, 107, 374-376.	1.2	70
6	D-Cbl, the Drosophila homologue of the c-Cbl proto-oncogene, interacts with the Drosophila EGF receptor in vivo, despite lacking C-terminal adaptor binding sites. Oncogene, 1997, 14, 2709-2719.	2.6	58
7	Expression of hedgehog signalling components in adult mouse testis. Developmental Dynamics, 2006, 235, 3063-3070.	0.8	51
8	Escargot Restricts Niche Cell to Stem Cell Conversion in the Drosophila Testis. Cell Reports, 2014, 7, 722-734.	2.9	51
9	Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO Journal, 2015, 34, 1319-1335.	3 . 5	50
10	Ectopic activation of Dpp signalling in the maleDrosophila germline inhibits germ cell differentiation. Genesis, 2004, 39, 84-93.	0.8	44
11	HOW Is Required for Stem Cell Maintenance in the Drosophila Testis and for the Onset of Transit-Amplifying Divisions. Cell Stem Cell, 2010, 6, 348-360.	5.2	44
12	Regulated nucleocytoplasmic transport during gametogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 616-630.	0.9	35
13	Drosophila Hfp negatively regulates dmyc and stg to inhibit cell proliferation. Development (Cambridge), 2004, 131, 1411-1423.	1.2	34
14	Wnt Signaling Regulates Snai1 Expression and Cellular Localization in the Mouse Intestinal Epithelial Stem Cell Niche. Stem Cells and Development, 2011, 20, 737-745.	1.1	31
15	The Musashi Family of RNA Binding Proteins: Master Regulators of Multiple Stem Cell Populations. Advances in Experimental Medicine and Biology, 2013, 786, 233-245.	0.8	31
16	RNA binding proteins in spermatogenesis: an in depth focus on the Musashi family. Asian Journal of Andrology, 2015, 17, 529.	0.8	31
17	Developmental Expression of Musashi-1 and Musashi-2 RNA-Binding Proteins During Spermatogenesis: Analysis of the Deleterious Effects of Dysregulated Expression1. Biology of Reproduction, 2014, 90, 92.	1.2	29
18	A Drosophila analogue of v-Cbl is a dominant-negative oncoprotein in vivo. Oncogene, 2000, 19, 3299-3308.	2.6	28

#	Article	IF	CITATIONS
19	The Drosophila melanogaster genome contains a member of the Rh/T2/S-glycoprotein family of ribonuclease-encoding genes. Gene, 1995, 158, 203-207.	1.0	25
20	RNA binding protein Musashiâ€1 directly targets Msi2 and Erh during early testis germ cell development and interacts with IPO5 upon translocation to the nucleus. FASEB Journal, 2015, 29, 2759-2768.	0.2	25
21	Drad21, a Drosophila rad21 homologue expressed in S-phase cells. Gene, 2000, 250, 77-84.	1.0	24
22	Functional analysis inDrosophila indicates that the NBCCS/PTCH1 mutation G509V results in activation of smoothened through a dominant-negative mechanism. Developmental Dynamics, 2004, 229, 780-790.	0.8	24
23	TGFÎ ² superfamily members in spermatogenesis: setting the stage for fertility in mouse and Drosophila. Cell and Tissue Research, 2005, 322, 141-146.	1.5	24
24	Structural basis for nuclear import selectivity of pioneer transcription factor SOX2. Nature Communications, 2021, 12, 28.	5.8	24
25	Ecdysone signaling opposes epidermal growth factor signaling in regulating cyst differentiation in the male gonad of Drosophila melanogaster. Developmental Biology, 2014, 394, 217-227.	0.9	22
26	A Drosophila toolkit for defining gene function in spermatogenesis. Reproduction, 2017, 153, R121-R132.	1.1	21
27	The Drosophila STIM1 orthologue, dSTIM, has roles in cell fate specification and tissue patterning. BMC Developmental Biology, 2008, 8, 104.	2.1	20
28	Regulation of Nuclear Import During Differentiation; The IMP α Gene Family and Spermatogenesis. Current Genomics, 2007, 8, 323-334.	0.7	19
29	Knockout of RNA Binding Protein MSI2 Impairs Follicle Development in the Mouse Ovary: Characterization of MSI1 and MSI2 during Folliculogenesis. Biomolecules, 2015, 5, 1228-1244.	1.8	16
30	Drosophila spermatogenesis: insights into testicular cancer. Journal of Developmental and Physical Disabilities, 2007, 30, 265-274.	3.6	14
31	Ttk69-dependent repression of lozenge prevents the ectopic development of R7 cells in the Drosophila larval eye disc. BMC Developmental Biology, 2009, 9, 64.	2.1	14
32	Micro-RNA mediated regulation of proliferation, self-renewal and differentiation of mammalian stem cells. Cell Adhesion and Migration, 2009, 3, 425-432.	1.1	14
33	Rbf Regulates Drosophila Spermatogenesis via Control of Somatic Stem and Progenitor Cell Fate in the Larval Testis. Stem Cell Reports, 2016, 7, 1152-1163.	2.3	14
34	Tob1 is expressed in developing and adult gonads and is associated with the P-body marker, Dcp2. Cell and Tissue Research, 2016, 364, 443-451.	1.5	14
35	Myc in Stem Cell Behaviour: Insights from Drosophila. Advances in Experimental Medicine and Biology, 2013, 786, 269-285.	0.8	14
36	GAL4 enhancer traps that can be used to drive gene expression in developing <i>Drosophila</i> spermatocytes. Genesis, 2012, 50, 914-920.	0.8	13

#	Article	IF	CITATIONS
37	Myc - What We have Learned from Flies. Current Drug Targets, 2009, 10, 590-601.	1.0	12
38	Drosophila Rbp6 Is an Orthologue of Vertebrate Msi-1 and Msi-2, but Does Not Function Redundantly with dMsi to Regulate Germline Stem Cell Behaviour. PLoS ONE, 2012, 7, e49810.	1.1	11
39	Dmp53 is sequestered to nuclear bodies in spermatogonia of Drosophila melanogaster. Cell and Tissue Research, 2012, 350, 385-394.	1.5	9
40	Dynamic expression of alternate splice forms of D-cbl during embryogenesis. Mechanisms of Development, 2001, 102, 235-238.	1.7	8
41	RNA binding protein Musashiâ€2 regulates PIWIL1 and TBX1 in mouse spermatogenesis. Journal of Cellular Physiology, 2018, 233, 3262-3273.	2.0	7
42	Alternative models for transgenerational epigenetic inheritance: Molecular psychiatry beyond mice and man. World Journal of Psychiatry, 2021, 11, 711-735.	1.3	7
43	Differential expression profiles of conserved Snail transcription factors in the mouse testis. Andrology, 2018, 6, 362-373.	1.9	6
44	Esrp1 is a marker of mouse fetal germ cells and differentially expressed during spermatogenesis. PLoS ONE, 2018, 13, e0190925.	1.1	6
45	Differential Roles of HOW in Male and Female Drosophila Germline Differentiation. PLoS ONE, 2011, 6, e28508.	1.1	5
46	The Stem Cell State. Advances in Experimental Medicine and Biology, 2013, 786, 1-4.	0.8	5
47	Spermatids do it differently! Paip2aâ€"the essential regulator of spermiogenesis?. Asian Journal of Andrology, 2011, 13, 122-124.	0.8	4
48	Genetic basis of human testicular germ cell cancer: insights from the fruitfly and mouse. Cell and Tissue Research, 2005, 322, 5-19.	1.5	3
49	Microarray profiling to analyze the effect of Snai1 loss in mouse intestinal epithelium. Genomics Data, 2015, 5, 106-108.	1.3	3
50	â€~Snail factors in testicular germ cell tumours and their regulation by the BMP4 signalling pathway'. Andrology, 2020, 8, 1456-1470.	1.9	2
51	Regulation of cell adhesion in the testis: a new role for p73. Asian Journal of Andrology, 2014, 16, 799.	0.8	2
52	Akap200 suppresses the effects of Dv-cbl expression in the Drosophila eye. Molecular and Cellular Biochemistry, 2012, 369, 135-145.	1.4	1
53	dRTEL1 is essential for the maintenance of Drosophila male germline stem cells. PLoS Genetics, 2021, 17, e1009834.	1.5	1
54	Analyzing stem cell dynamics: use of cutting edge genetic approaches in model organisms. Frontiers in Biology, 2015, 10, 1-10.	0.7	0