Frank Julicher

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9446736/frank-julicher-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

290	23,431 citations	79	148
papers		h-index	g-index
361 ext. papers	28,248 ext. citations	8.1 avg, IF	7.26 L-index

#	Paper	IF	Citations
290	Hydrodynamics of chiral squirmers <i>Physical Review E</i> , 2022 , 105, 024603	2.4	2
289	Active T1 transitions in cellular networks European Physical Journal E, 2022, 45, 29	1.5	1
288	Co-condensation of proteins with single- and double-stranded DNA <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2107871119	11.5	2
287	Molecular Assembly Lines in Active Droplets <i>Physical Review Letters</i> , 2022 , 128, 108102	7.4	О
286	Transcription organizes euchromatin via microphase separation. <i>Nature Communications</i> , 2021 , 12, 1360	017.4	29
285	Active Viscoelasticity of Odd Materials. <i>Physical Review Letters</i> , 2021 , 126, 138001	7.4	10
284	Inferring the flow properties of epithelial tissues from their geometry. <i>New Journal of Physics</i> , 2021 , 23, 033004	2.9	7
283	Self-organized patterning of cell morphology via mechanosensitive feedback. <i>ELife</i> , 2021 , 10,	8.9	8
282	Theory of time delayed genetic oscillations with external noisy regulation. <i>New Journal of Physics</i> , 2021 , 23, 033030	2.9	3
281	A hydraulic instability drives the cell death decision in the nematode germline. <i>Nature Physics</i> , 2021 , 17, 920-925	16.2	9
280	Hydraulic and electric control of cell spheroids. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
279	Epithelial colonies in vitro elongate through collective effects. <i>ELife</i> , 2021 , 10,	8.9	11
278	Continuum Theory of Active Phase Separation in Cellular Aggregates. <i>Physical Review Letters</i> , 2021 , 126, 018102	7.4	4
277	Apico-basal cell compression regulates Lamin A/C levels in epithelial tissues. <i>Nature Communications</i> , 2021 , 12, 1756	17.4	5
276	Force generation by protein DNA co-condensation. <i>Nature Physics</i> , 2021 , 17, 1007-1012	16.2	7
275	Quantifying entropy production in active fluctuations of the hair-cell bundle from time irreversibility and uncertainty relations. <i>New Journal of Physics</i> , 2021 , 23, 083013	2.9	4
274	Local thermodynamics govern formation and dissolution of elegans P granule condensates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	9

273	Nonlinear rheology of cellular networks. <i>Cells and Development</i> , 2021 , 203746		3
272	Morphogen gradient scaling by recycling of intracellular Dpp <i>Nature</i> , 2021 ,	50.4	3
271	Protein condensates as aging Maxwell fluids. <i>Science</i> , 2020 , 370, 1317-1323	33.3	75
270	BMP Signaling Gradient Scaling in the Zebrafish Pectoral Fin. <i>Cell Reports</i> , 2020 , 30, 4292-4302.e7	10.6	10
269	Active forces shape the metaphase spindle through a mechanical instability. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 16154-16159	11.5	9
268	Phase separation provides a mechanism to reduce noise in cells. <i>Science</i> , 2020 , 367, 464-468	33.3	101
267	Quantification of nematic cell polarity in three-dimensional tissues. <i>PLoS Computational Biology</i> , 2020 , 16, e1008412	5	3
266	Power-law population heterogeneity governs epidemic waves. <i>PLoS ONE</i> , 2020 , 15, e0239678	3.7	18
265	Flagellar length control in biflagellate eukaryotes: time-of-flight, shared pool, train traffic and cooperative phenomena. <i>New Journal of Physics</i> , 2020 , 22, 083009	2.9	5
264	Extreme-value statistics of stochastic transport processes. <i>New Journal of Physics</i> , 2020 , 22, 123038	2.9	6
263	Liquid Phase Separation Controlled by pH. <i>Biophysical Journal</i> , 2020 , 119, 1590-1605	2.9	17
262	Power-law population heterogeneity governs epidemic waves 2020 , 15, e0239678		
261	Power-law population heterogeneity governs epidemic waves 2020 , 15, e0239678		
260	Power-law population heterogeneity governs epidemic waves 2020 , 15, e0239678		
259	Power-law population heterogeneity governs epidemic waves 2020 , 15, e0239678		
258	Active cargo positioning in antiparallel transport networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 14835-14842	11.5	2
257	Fluid pumping and active flexoelectricity can promote lumen nucleation in cell assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19264-1927	3 ^{11.5}	16
256	Body size-dependent energy storage causes Kleiber's law scaling of the metabolic rate in planarians. <i>ELife</i> , 2019 , 8,	8.9	31

255	Extreme reductions of entropy in an electronic double dot. <i>Physical Review B</i> , 2019 , 99,	3.3	12
254	Physics of active emulsions. <i>Reports on Progress in Physics</i> , 2019 , 82, 064601	14.4	72
253	Epithelial Viscoelasticity Is Regulated by Mechanosensitive E-cadherin Turnover. <i>Current Biology</i> , 2019 , 29, 578-591.e5	6.3	71
252	Field induced cell proliferation and death in a model epithelium. New Journal of Physics, 2019, 21, 04302	3 5 .9	5
251	Soluble tubulin is significantly enriched at mitotic centrosomes. <i>Journal of Cell Biology</i> , 2019 , 218, 3977	- 3/9/ 85	13
250	Integral fluctuation relations for entropy production at stopping times. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2019 , 2019, 104006	1.9	14
249	Casimir stresses in active nematic films. New Journal of Physics, 2019, 21, 123046	2.9	
248	Minimal Model of Cellular Symmetry Breaking. <i>Physical Review Letters</i> , 2019 , 123, 188101	7.4	14
247	Liquid-crystal organization of liver tissue. <i>ELife</i> , 2019 , 8,	8.9	25
246	Cell-level 3D reconstruction and quantification of the Drosophila wing imaginal disc. <i>International Journal of Bioinformatics Research and Applications</i> , 2019 , 15, 174	0.9	
245	Self-organized shape dynamics of active surfaces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 29-34	11.5	48
244	Guiding self-organized pattern formation in cell polarity establishment. <i>Nature Physics</i> , 2019 , 15, 293-30	00 6.2	51
243	Friction from Transduction Channels' Gating Affects Spontaneous Hair-Bundle Oscillations. <i>Biophysical Journal</i> , 2018 , 114, 425-436	2.9	10
242	Mechanochemical Pattern Formation in the Actomyosin Cortex. <i>Seibutsu Butsuri</i> , 2018 , 58, 027-030	О	
241	Hydrodynamic theory of active matter. Reports on Progress in Physics, 2018, 81, 076601	14.4	104
240	Chemical event chain model of coupled genetic oscillators. <i>Physical Review E</i> , 2018 , 97, 032409	2.4	10
239	Computational modeling of dynein activity and the generation of flagellar beating waveforms 2018 , 192-212		O
238	Critical Point in Self-Organized Tissue Growth. <i>Physical Review Letters</i> , 2018 , 120, 198102	7.4	16

237	Morphogenetic degeneracies in the actomyosin cortex. ELife, 2018, 7,	8.9	24
236	Discontinuous switching of position of two coexisting phases. New Journal of Physics, 2018, 20, 075009	2.9	6
235	Differential lateral and basal tension drive folding of Drosophila wing discs through two distinct mechanisms. <i>Nature Communications</i> , 2018 , 9, 4620	17.4	58
234	Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps. <i>Physical Review Letters</i> , 2018 , 121, 258101	7.4	73
233	Positioning of Particles in Active Droplets. <i>Physical Review Letters</i> , 2018 , 121, 158102	7.4	14
232	Role of hydrodynamic flows in chemically driven droplet division. <i>New Journal of Physics</i> , 2018 , 20, 1050) 1:0 9	11
231	Exactly solvable dynamics of forced polymer loops. New Journal of Physics, 2018, 20, 113005	2.9	3
230	Triangles bridge the scales: Quantifying cellular contributions to tissue deformation. <i>Physical Review E</i> , 2017 , 95, 032401	2.4	40
229	Antagonistic Self-Organizing Patterning Systems Control Maintenance and Regeneration of the Anteroposterior Axis in Planarians. <i>Developmental Cell</i> , 2017 , 40, 248-263.e4	10.2	66
228	Emergence of tissue shape changes from collective cell behaviours. <i>Seminars in Cell and Developmental Biology</i> , 2017 , 67, 103-112	7.5	30
227	Growth and division of active droplets provides a model for protocells. <i>Nature Physics</i> , 2017 , 13, 408-41	3 16.2	182
226	Generic Properties of Stochastic Entropy Production. <i>Physical Review Letters</i> , 2017 , 119, 140604	7.4	84
225	Statistics of Infima and Stopping Times of Entropy Production and Applications to Active Molecular Processes. <i>Physical Review X</i> , 2017 , 7,	9.1	50
224	Cell dynamics underlying oriented growth of the wing imaginal disc. <i>Development (Cambridge)</i> , 2017 , 144, 4406-4421	6.6	46
223	Self-organized synchronization of digital phase-locked loops with delayed coupling in theory and experiment. <i>PLoS ONE</i> , 2017 , 12, e0171590	3.7	9
222	Physical limits of flow sensing in the left-right organizer. <i>ELife</i> , 2017 , 6,	8.9	28
221	An information theoretic analysis of sequential decision-making 2017,		1
220	Droplet ripening in concentration gradients. New Journal of Physics, 2017, 19, 053021	2.9	21

219	Mechanics of active surfaces. <i>Physical Review E</i> , 2017 , 96, 032404	2.4	54
218	Active dynamics of tissue shear flow. New Journal of Physics, 2017, 19, 033006	2.9	31
217	Controlling contractile instabilities in the actomyosin cortex. <i>ELife</i> , 2017 , 6,	8.9	54
216	Polar Positioning of Phase-Separated Liquid Compartments in Cells Regulated by an mRNA Competition Mechanism. <i>Cell</i> , 2016 , 166, 1572-1584.e16	56.2	206
215	Curvature regulation of the ciliary beat through axonemal twist. <i>Physical Review E</i> , 2016 , 94, 042426	2.4	19
214	Paired arrangement of kinetochores together with microtubule pivoting and dynamics drive kinetochore capture in meiosis I. <i>Scientific Reports</i> , 2016 , 6, 25736	4.9	11
213	Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer. <i>Scientific Reports</i> , 2016 , 6, 20838	4.9	19
212	Sequential pattern formation governed by signaling gradients. <i>Physical Biology</i> , 2016 , 13, 05LT03	3	11
211	Determining Physical Properties of the Cell Cortex. <i>Biophysical Journal</i> , 2016 , 110, 1421-9	2.9	48
210	Interface Contractility between Differently Fated Cells Drives Cell Elimination and Cyst Formation. <i>Current Biology</i> , 2016 , 26, 563-74	6.3	86
209	Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock. <i>ELife</i> , 2016 , 5,	8.9	59
208	Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella. <i>ELife</i> , 2016 , 5,	8.9	91
207	TissueMiner: A multiscale analysis toolkit to quantify how cellular processes create tissue dynamics. <i>ELife</i> , 2016 , 5,	8.9	77
206	Author response: TissueMiner: A multiscale analysis toolkit to quantify how cellular processes create tissue dynamics 2016 ,		2
205	The Selector Gene apterous and Notch Are Required to Locally Increase Mechanical Cell Bond Tension at the Drosophila Dorsoventral Compartment Boundary. <i>PLoS ONE</i> , 2016 , 11, e0161668	3.7	10
204	Interface dynamics of competing tissues. <i>New Journal of Physics</i> , 2016 , 18, 083020	2.9	15
203	Theory of Cargo and Membrane Trafficking 2016 , 56-62		
202	Independent Control of the Static and Dynamic Components of the Chlamydomonas Flagellar Beat. <i>Current Biology</i> , 2016 , 26, 1098-103	6.3	27

(2015-2016)

201	Polo-like kinase phosphorylation determines Caenorhabditis elegans centrosome size and density by biasing SPD-5 toward an assembly-competent conformation. <i>Biology Open</i> , 2016 , 5, 1431-1440	2.2	35	
200	Rheology of the Active Cell Cortex in Mitosis. <i>Biophysical Journal</i> , 2016 , 111, 589-600	2.9	76	
199	Autonomous Chemical Oscillator Circuit Based on Bidirectional Chemical-Microfluidic Coupling. <i>Advanced Materials Technologies</i> , 2016 , 1, 1600005	6.8	24	
198	Continuum theory of gene expression waves during vertebrate segmentation. <i>New Journal of Physics</i> , 2015 , 17, 093042	2.9	21	
197	A local difference in Hedgehog signal transduction increases mechanical cell bond tension and biases cell intercalations along the Drosophila anteroposterior compartment boundary. <i>Development (Cambridge)</i> , 2015 , 142, 3845-58	6.6	23	
196	Suppression of Ostwald ripening in active emulsions. <i>Physical Review E</i> , 2015 , 92, 012317	2.4	79	
195	Dynamic force balances and cell shape changes during cytokinesis. <i>Physical Review Letters</i> , 2015 , 114, 048102	7.4	13	
194	Pulled Polymer Loops as a Model for the Alignment of Meiotic Chromosomes. <i>Physical Review Letters</i> , 2015 , 115, 208102	7.4	8	
193	Decision Making in the Arrow of Time. <i>Physical Review Letters</i> , 2015 , 115, 250602	7.4	46	
192	Hair-bundle friction from transduction channels gating forces 2015,		1	
191	The wing and the eye: a parsimonious theory for scaling and growth control?. <i>Wiley Interdisciplinary Reviews: Developmental Biology</i> , 2015 , 4, 591-608	5.9	16	
190	Scaling and regeneration of self-organized patterns. <i>Physical Review Letters</i> , 2015 , 114, 138101	7.4	44	
189	A hybrid particle-mesh method for incompressible active polar viscous gels. <i>Journal of Computational Physics</i> , 2015 , 291, 334-361	4.1	8	
188	Polarized endosome dynamics by spindle asymmetry during asymmetric cell division. <i>Nature</i> , 2015 , 528, 280-5	50.4	81	
187	Synchronization of mutually coupled digital PLLs in massive MIMO systems 2015,		6	
186	Active gel physics. <i>Nature Physics</i> , 2015 , 11, 111-117	16.2	384	
185	Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing. <i>ELife</i> , 2015 , 4, e07090	8.9	192	
184	Author response: Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing 2015 ,		2	

183	Quantification of surface tension and internal pressure generated by single mitotic cells. <i>Scientific Reports</i> , 2014 , 4, 6213	4.9	105
182	Growth control by a moving morphogen gradient during Drosophila eye development. <i>Development (Cambridge)</i> , 2014 , 141, 1884-93	6.6	35
181	Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2636-45	11.5	122
180	Liquid-liquid phase separation in biology. <i>Annual Review of Cell and Developmental Biology</i> , 2014 , 30, 39-58	12.6	1383
179	Wnt-regulated dynamics of positional information in zebrafish somitogenesis. <i>Development</i> (Cambridge), 2014 , 141, 1381-91	6.6	44
178	The balance of prickle/spiny-legs isoforms controls the amount of coupling between core and fat PCP systems. <i>Current Biology</i> , 2014 , 24, 2111-2123	6.3	52
177	Multimotor transport in a system of active and inactive kinesin-1 motors. <i>Biophysical Journal</i> , 2014 , 107, 365-372	2.9	22
176	Local increases in mechanical tension shape compartment boundaries by biasing cell intercalations. <i>Current Biology</i> , 2014 , 24, 1798-805	6.3	65
175	Genetic oscillations. A Doppler effect in embryonic pattern formation. <i>Science</i> , 2014 , 345, 222-5	33.3	83
174	The role of endocytosis during morphogenetic signaling. <i>Cold Spring Harbor Perspectives in Biology</i> , 2014 , 6, a016881	10.2	17
173	An active oscillator model describes the statistics of spontaneous otoacoustic emissions. <i>Biophysical Journal</i> , 2014 , 107, 815-24	2.9	17
172	Motor regulation results in distal forces that bend partially disintegrated Chlamydomonas axonemes into circular arcs. <i>Biophysical Journal</i> , 2014 , 106, 2434-42	2.9	21
171	Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7185-90	11.5	27
170	Synchronization in networks of mutually delay-coupled phase-locked loops. <i>New Journal of Physics</i> , 2014 , 16, 113009	2.9	14
169	Active elastic thin shell theory for cellular deformations. New Journal of Physics, 2014, 16, 065005	2.9	26
168	General theory for the mechanics of confined microtubule asters. New Journal of Physics, 2014, 16, 013	01.8)	23
167	Mechanically driven interface propagation in biological tissues. New Journal of Physics, 2014, 16, 03500	122.9	16
166	Active phase and amplitude fluctuations of flagellar beating. <i>Physical Review Letters</i> , 2014 , 113, 04810	1 7.4	64

(2012-2014)

165	Synchronization dynamics in the presence of coupling delays and phase shifts. <i>Physical Review Letters</i> , 2014 , 112, 174101	7.4	23
164	Pulsatory Patterns in Active Fluids. <i>Physical Review Letters</i> , 2014 , 112,	7.4	40
163	Stress distributions and cell flows in a growing cell aggregate. <i>Interface Focus</i> , 2014 , 4, 20140033	3.9	39
162	Theme Issue in memory of Tom Duke. <i>Interface Focus</i> , 2014 , 4, 20140072	3.9	78
161	Active torque generation by the actomyosin cell cortex drives left-right symmetry breaking. <i>ELife</i> , 2014 , 3, e04165	8.9	137
160	XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules. <i>Nature Cell Biology</i> , 2013 , 15, 1116-22	23.4	87
159	Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18058-63	11.5	85
158	Spatial organization of the cell cytoplasm by position-dependent phase separation. <i>Physical Review Letters</i> , 2013 , 111, 088101	7.4	110
157	3D surface reconstruction and visualization of theDrosophilawing imaginal disc at cellular resolution 2013 ,		1
156	Active chiral processes in thin films. <i>Physical Review Letters</i> , 2013 , 110, 048103	7.4	49
155	Physical mechanisms shaping the Drosophila dorsoventral compartment boundary. <i>Current Biology</i> , 2012 , 22, 967-76	6.3	94
154	NOISE AND OSCILLATIONS IN BIOLOGICAL SYSTEMS: MULTIDISCIPLINARY APPROACH BETWEEN EXPERIMENTAL BIOLOGY, THEORETICAL MODELLING AND SYNTHETIC BIOLOGY. <i>International Journal of Modern Physics B</i> , 2012 , 26, 1246009	1.1	1
153	Investigating the principles of morphogen gradient formation: from tissues to cells. <i>Current Opinion in Genetics and Development</i> , 2012 , 22, 527-32	4.9	51
152	Epithelial cell reconstruction and visualization of the developing Drosophila wing imaginal disc 2012 ,		2
151	Establishment of global patterns of planar polarity during growth of the Drosophila wing epithelium. <i>Current Biology</i> , 2012 , 22, 1296-301	6.3	85
150	Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. <i>Cell</i> , 2012 , 148, 502-14	56.2	288
149	Active chiral fluids. European Physical Journal E, 2012 , 35, 89	1.5	51
148	A mean-field approach to elastically coupled hair bundles. <i>European Physical Journal E</i> , 2012 , 35, 37	1.5	12

147	Tissue dynamics with permeation. European Physical Journal E, 2012, 35, 46	1.5	22
146	A general theoretical framework to infer endosomal network dynamics from quantitative image analysis. <i>Current Biology</i> , 2012 , 22, 1381-90	6.3	51
145	Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. <i>Science</i> , 2012 , 338, 253-6	33.3	358
144	The TaylorCouette motor: spontaneous flows of active polar fluids between two coaxial cylinders. <i>New Journal of Physics</i> , 2012 , 14, 023001	2.9	53
143	Topology and dynamics of the zebrafish segmentation clock core circuit. <i>PLoS Biology</i> , 2012 , 10, e1001	3 <i>6</i> 47	84
142	Anomalous behavior of the diffusion coefficient in thin active films. <i>New Journal of Physics</i> , 2012 , 14, 115001	2.9	6
141	Positioning of microtubule organizing centers by cortical pushing and pulling forces. <i>New Journal of Physics</i> , 2012 , 14, 105025	2.9	30
140	Collective modes of coupled phase oscillators with delayed coupling. <i>Physical Review Letters</i> , 2012 , 108, 204101	7.4	40
139	Flagellar synchronization independent of hydrodynamic interactions. <i>Physical Review Letters</i> , 2012 , 109, 138102	7.4	75
138	Response to Comment on "Dynamics of Dpp Signaling and Proliferation Control". <i>Science</i> , 2012 , 335, 401-401	33.3	16
137	Pattern formation in active fluids. <i>Physical Review Letters</i> , 2011 , 106, 028103	7.4	149
136	SnapShot: the segmentation clock. <i>Cell</i> , 2011 , 145, 800-800.e1	56.2	5
135	Cell flow and tissue polarity patterns. Current Opinion in Genetics and Development, 2011, 21, 747-52	4.9	47
134	Understanding morphogenetic growth control lessons from flies. <i>Nature Reviews Molecular Cell Biology</i> , 2011 , 12, 594-604	48.7	94
133	Hydrodynamics of active permeating gels. New Journal of Physics, 2011, 13, 093027	2.9	36
132	Dynamics of Dpp signaling and proliferation control. <i>Science</i> , 2011 , 331, 1154-9	33.3	256
131	Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. <i>Nature</i> , 2010 , 467, 617-21	50.4	353
130	High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory. <i>Journal of Experimental Biology</i> , 2010 , 213, 1226-34	3	190

129	Collective behavior of antagonistically acting kinesin-1 motors. <i>Physical Review Letters</i> , 2010 , 105, 1281	10,34	30
128	Coupling a sensory hair-cell bundle to cyber clones enhances nonlinear amplification. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 8079-84	11.5	34
127	Fluidization of tissues by cell division and apoptosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 20863-8	11.5	281
126	The interplay between active hair bundle motility and electromotility in the cochlea. <i>Journal of the Acoustical Society of America</i> , 2010 , 128, 1175-90	2.2	37
125	A critique of the critical cochlea: Hopfa bifurcationis better than none. <i>Journal of Neurophysiology</i> , 2010 , 104, 1219-29	3.2	83
124	Bipedal locomotion in crawling cells. <i>Biophysical Journal</i> , 2010 , 98, 933-42	2.9	78
123	The remarkable cochlear amplifier. <i>Hearing Research</i> , 2010 , 266, 1-17	3.9	165
122	Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. <i>Cell</i> , 2010 , 142, 773-	-8 5 6.2	500
121	Mechanics and remodelling of cell packings in epithelia. European Physical Journal E, 2010, 33, 117-27	1.5	152
120	Centrosome size sets mitotic spindle length in Caenorhabditis elegans embryos. <i>Current Biology</i> , 2010 , 20, 353-8	6.3	140
119	Intercellular coupling regulates the period of the segmentation clock. Current Biology, 2010, 20, 1244-5	53 6.3	122
118	Local exponents of nonlinear compression in periodically driven noisy oscillators. <i>Physical Review Letters</i> , 2009 , 103, 250601	7.4	20
117	Nonlinear dynamics of cilia and flagella. <i>Physical Review E</i> , 2009 , 79, 051918	2.4	60
116	Steering chiral swimmers along noisy helical paths. <i>Physical Review Letters</i> , 2009 , 103, 068102	7.4	65
115	Delayed coupling theory of vertebrate segmentation. <i>HFSP Journal</i> , 2009 , 3, 55-66		107
114	Comment on "Osmotic propulsion: the osmotic motor". <i>Physical Review Letters</i> , 2009 , 103, 079801; author reply 079802	7.4	17
113	Self-organization of dynein motors generates meiotic nuclear oscillations. <i>PLoS Biology</i> , 2009 , 7, e1000	08 <i>7</i> 7	103
112	Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. <i>Current Biology</i> , 2009 , 19, 1950-5	6.3	236

111	Generic theory of colloidal transport. European Physical Journal E, 2009, 29, 27-36	1.5	117
110	Spontaneous movements and linear response of a noisy oscillator. <i>European Physical Journal E</i> , 2009 , 29, 449-60	1.5	22
109	Quantification of growth asymmetries in developing epithelia. <i>European Physical Journal E</i> , 2009 , 30, 93-9	1.5	26
108	Microtubules and motor proteins: Mechanically regulated self-organization in vivo. <i>European Physical Journal: Special Topics</i> , 2009 , 178, 57-69	2.3	2
107	Germline P granules are liquid droplets that localize by controlled dissolution/condensation. <i>Science</i> , 2009 , 324, 1729-32	33.3	1476
106	ACTIVE HAIR-BUNDLE MOTILITY BY THE VERTEBRATE HAIR CELL 2009 ,		2
105	The chirality of ciliary beats. <i>Physical Biology</i> , 2008 , 5, 016003	3	71
104	Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. <i>HFSP Journal</i> , 2008 , 2, 42-56		113
103	The stochastic dance of circling sperm cells: sperm chemotaxis in the plane. <i>New Journal of Physics</i> , 2008 , 10, 123025	2.9	74
102	Precision of the Dpp gradient. <i>Development (Cambridge)</i> , 2008 , 135, 1137-46	6.6	111
101	Enhancement of sensitivity gain and frequency tuning by coupling of active hair bundles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 18669-74	11.5	61
100	Dynamics of anisotropic tissue growth. <i>New Journal of Physics</i> , 2008 , 10, 063001	2.9	60
99	Two-state approach to stochastic hair bundle dynamics. <i>Physical Review E</i> , 2008 , 77, 041901	2.4	13
98	Thermal and non-thermal fluctuations in active polar gels. European Physical Journal E, 2008, 27, 149-60	1.5	29
97	Critical Oscillators as Active Elements in Hearing 2008 , 63-92		4
96	Unifying the various incarnations of active hair-bundle motility by the vertebrate hair cell. <i>Biophysical Journal</i> , 2007 , 93, 4053-67	2.9	101
95	Stress generation and filament turnover during actin ring constriction. PLoS ONE, 2007, 2, e696	3.7	88
94	Active behavior of the Cytoskeleton. <i>Physics Reports</i> , 2007 , 449, 3-28	27.7	295

93	Experimental and theoretical study of mitotic spindle orientation. <i>Nature</i> , 2007 , 447, 493-6	50.4	319
92	The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. <i>Current Biology</i> , 2007 , 17, 2095-104	6.3	762
91	Kinetics of morphogen gradient formation. <i>Science</i> , 2007 , 315, 521-5	33.3	296
90	How molecular motors shape the flagellar beat. HFSP Journal, 2007, 1, 192-208		227
89	Response and fluctuations of a two-state signaling module with feedback. <i>Physical Review E</i> , 2007 , 76, 021904	2.4	4
88	Precision of genetic oscillators and clocks. <i>Physical Review Letters</i> , 2007 , 98, 228101	7.4	53
87	Morphogen transport in epithelia. <i>Physical Review E</i> , 2007 , 75, 011901	2.4	40
86	Chemotaxis of sperm cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 13256-61	11.5	157
85	Hydrodynamic theory for multi-component active polar gels. New Journal of Physics, 2007, 9, 422-422	2.9	96
84	Postsynaptic mad signaling at the Drosophila neuromuscular junction. Current Biology, 2006, 16, 625-35	6.3	50
83	Postsynaptic Mad Signaling at the Drosophila Neuromuscular Junction. <i>Current Biology</i> , 2006 , 16, 1256	6.3	
82	Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators. <i>Current Biology</i> , 2006 , 16, 2111-22	6.3	143
81	Contractility and retrograde flow in lamellipodium motion. <i>Physical Biology</i> , 2006 , 3, 130-7	3	142
80	Hydrodynamic flow patterns and synchronization of beating cilia. <i>Physical Review Letters</i> , 2006 , 96, 058	1 9 .24	165
79	Calibration of optical tweezers with positional detection in the back focal plane. <i>Review of Scientific Instruments</i> , 2006 , 77, 103101	1.7	234
78	Statistical physics of active processes in cells. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2006 , 369, 185-200	3.3	11
77	Dynamics and mechanics of motor-filament systems. European Physical Journal E, 2006, 20, 459-65	1.5	9
76	Robust formation of morphogen gradients. <i>Physical Review Letters</i> , 2005 , 94, 018103	7.4	84

Spontaneous oscillations in mechanosensory hair bundles (Keynote Address) **2005**, 5841, 17

	Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. <i>European Physical Journal</i>		- 0 -
74	<i>E</i> , 2005 , 16, 5-16	1.5	381
73	Theory of mitotic spindle oscillations. <i>Physical Review Letters</i> , 2005 , 94, 108104	7.4	120
72	Oscillations in cell biology. Current Opinion in Cell Biology, 2005, 17, 20-6	9	141
71	Velocity and processivity of helicase unwinding of double-stranded nucleic acids. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, S3851-69	1.8	15
70	Continuum description of the cytoskeleton: ring formation in the cell cortex. <i>Physical Review Letters</i> , 2005 , 95, 258103	7.4	44
69	Universal critical behavior of noisy coupled oscillators: a renormalization group study. <i>Physical Review E</i> , 2005 , 72, 016130	2.4	22
68	Filament depolymerization by motor molecules. <i>Physical Review Letters</i> , 2005 , 94, 108102	7.4	52
67	Opening of nucleic-acid double strands by helicases: active versus passive opening. <i>Physical Review E</i> , 2005 , 71, 011904	2.4	105
66	Asters, vortices, and rotating spirals in active gels of polar filaments. <i>Physical Review Letters</i> , 2004 , 92, 078101	7.4	417
65	Universal critical behavior of noisy coupled oscillators. <i>Physical Review Letters</i> , 2004 , 93, 175702	7.4	30
64	Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model. <i>Development (Cambridge)</i> , 2004 , 131, 4843-56	6.6	86
63	Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 12195-200	11.5	133
62	Role of tensile stress in actin gels and a symmetry-breaking instability. <i>European Physical Journal E</i> , 2004 , 13, 247-59	1.5	35
61	Membranes with rotating motors: microvortex assemblies. European Physical Journal E, 2004, 13, 379-9	901.5	15
60	Fluid membranes exchanging material with external reservoirs. <i>European Physical Journal E</i> , 2004 , 14, 387-94	1.5	12
59	Morphogenetic oscillations during symmetry breaking of regeneratingHydra vulgariscells. <i>Europhysics Letters</i> , 2003 , 64, 137-143	1.6	28
58	Continuum theory of contractile fibres. <i>Europhysics Letters</i> , 2003 , 64, 716-722	1.6	30

(2000-2003)

57	Active traveling wave in the cochlea. <i>Physical Review Letters</i> , 2003 , 90, 158101	7.4	68
56	Physical Basis of Interference Effects in Hearing. <i>Annales Henri Poincare</i> , 2003 , 4, 667-669	1.2	1
55	Active Behaviors in Living Cells. <i>Annales Henri Poincare</i> , 2003 , 4, 671-678	1.2	1
54	Motion of an adhesive gel in a swelling gradient: a mechanism for cell locomotion. <i>Physical Review Letters</i> , 2003 , 90, 168102	7.4	50
53	Membranes with rotating motors. <i>Physical Review Letters</i> , 2003 , 91, 108104	7.4	55
52	Self-organization and mechanical properties of active filament bundles. <i>Physical Review E</i> , 2003 , 67, 05	1 <u>9</u> 13	77
51	A motor that makes its own track: helicase unwinding of DNA. <i>Physical Review Letters</i> , 2003 , 91, 258103	3 7.4	50
50	ACTIVE AMPLIFICATION BY CRITICAL OSCILLATIONS 2003,		3
49	Active Behaviors in Living Cells 2003 , 671-678		
48	Physical Basis of Interference Effects in Hearing 2003 , 667-669		
48 47	Physical Basis of Interference Effects in Hearing 2003 , 667-669 Formation and interaction of membrane tubes. <i>Physical Review Letters</i> , 2002 , 88, 238101	7.4	350
, i		7.4	350 156
47	Formation and interaction of membrane tubes. <i>Physical Review Letters</i> , 2002 , 88, 238101 Bidirectional cooperative motion of molecular motors. <i>Proceedings of the National Academy of</i>	, .	
47	Formation and interaction of membrane tubes. <i>Physical Review Letters</i> , 2002 , 88, 238101 Bidirectional cooperative motion of molecular motors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 6696-701	, .	156 5
47 46 45	Formation and interaction of membrane tubes. <i>Physical Review Letters</i> , 2002 , 88, 238101 Bidirectional cooperative motion of molecular motors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 6696-701 Mechanical oscillations at the cellular scale. <i>Comptes Rendus Physique</i> , 2001 , 2, 849-860 Comparison of a hair bundle's spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process. <i>Proceedings of the National Academy of Sciences of the United</i>	11.5	156 5
47 46 45 44	Formation and interaction of membrane tubes. <i>Physical Review Letters</i> , 2002 , 88, 238101 Bidirectional cooperative motion of molecular motors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 6696-701 Mechanical oscillations at the cellular scale. <i>Comptes Rendus Physique</i> , 2001 , 2, 849-860 Comparison of a hair bundle's spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 14380-5 Physical basis of two-tone interference in hearing. <i>Proceedings of the National Academy of Sciences</i>	11.5	156 5 180
47 46 45 44 43	Formation and interaction of membrane tubes. <i>Physical Review Letters</i> , 2002 , 88, 238101 Bidirectional cooperative motion of molecular motors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 6696-701 Mechanical oscillations at the cellular scale. <i>Comptes Rendus Physique</i> , 2001 , 2, 849-860 Comparison of a hair bundle's spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 14380-5 Physical basis of two-tone interference in hearing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 9080-5	11.5	156 5 180 67

39	Actively contracting bundles of polar filaments. <i>Physical Review Letters</i> , 2000 , 85, 1778-81	7.4	158
38	Generic aspects of axonemal beating. <i>New Journal of Physics</i> , 2000 , 2, 24-24	2.9	163
37	Jlicher and Prost Reply:. <i>Physical Review Letters</i> , 1999 , 83, 5404-5404	7.4	2
36	Dynamic Fluctuations of Semiflexible Filaments. <i>Physical Review Letters</i> , 1999 , 82, 3717-3720	7.4	96
35	Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibrium. <i>Physical Review E</i> , 1999 , 60, 2127-40	2.4	213
34	Self-Organized Beating and Swimming of Internally Driven Filaments. <i>Physical Review Letters</i> , 1999 , 82, 1590-1593	7.4	164
33	On the listerialpropulsion mechanism 1999 , 53, 155-170		21
32	Force and motion generation of molecular motors: A generic description 1999 , 46-74		7
31	Acting on actin: the electric motility assay. European Biophysics Journal, 1998, 27, 403-8	1.9	120
30	Motion of RNA polymerase along DNA: a stochastic model. <i>Biophysical Journal</i> , 1998 , 74, 1169-85	2.9	68
29	Molecular Motors: From Individual to Collective Behavior. <i>Progress of Theoretical Physics Supplement</i> , 1998 , 130, 9-16		39
28	Spontaneous Oscillations of Collective Molecular Motors. <i>Physical Review Letters</i> , 1997 , 78, 4510-4513	7.4	188
27	Modeling molecular motors. <i>Reviews of Modern Physics</i> , 1997 , 69, 1269-1282	40.5	1481
26	Shape transformations of vesicles with intramembrane domains. <i>Physical Review E</i> , 1996 , 53, 2670-2683	3 2.4	236
25	Quantitation of regional cerebral blood flow with 15O-butanol and positron emission tomography in humans. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 1996 , 16, 645-9	7.3	55
24	The Morphology of Vesicles of Higher Topological Genus: Conformal Degeneracy and Conformal Modes. <i>Journal De Physique II</i> , 1996 , 6, 1797-1824		25
23	Cooperative molecular motors. <i>Physical Review Letters</i> , 1995 , 75, 2618-2621	7.4	277
22	Shape equations for axisymmetric vesicles: A clarification. <i>Physical Review E</i> , 1994 , 49, 4728-4731	2.4	78

21	Supercoiling transitions of closed DNA. <i>Physical Review E</i> , 1994 , 49, 2429-2435	2.4	34
20	Conformal degeneracy and conformal diffusion of vesicles. <i>Physical Review Letters</i> , 1993 , 71, 452-455	7.4	49
19	Domain-induced budding of vesicles. <i>Physical Review Letters</i> , 1993 , 70, 2964-2967	7.4	277
18	Phase diagrams and shape transformations of toroidal vesicles. <i>Journal De Physique II</i> , 1993 , 3, 1681-17	05	18
17	Influence of size of regions of interest on PET evaluation of caudate glucose consumption. <i>Journal of Computer Assisted Tomography</i> , 1992 , 16, 789-94	2.2	18
16	Exact Functional Renormalization Group for Wetting Transitions in 1 + 1 Dimensions. <i>Europhysics Letters</i> , 1990 , 11, 657-662	1.6	24
15	Sequence-dependent surface condensation of a pioneer transcription factor on DNA. <i>Nature Physics</i> ,	16.2	7
14	Mechanosensitive binding of p120-Catenin at cell junctions regulates E-Cadherin turnover and epithelial viscoelasticity		1
13	Liquid-crystal organization of liver tissue		1
12	Soluble tubulin is locally enriched at mitotic centrosomes in C. elegans		2
11	Epithelial colonies in vitro elongate through collective effects		1
10	Self-organized patterning of cell morphology via mechanosensitive feedback		1
9	A hydraulic instability drives the cell death decision in the nematode germline		3
8	Force generation by protein-DNA co-condensation		1
7	Surface condensation of a pioneer transcription factor on DNA		7
6	Transcription organizes euchromatin similar to an active microemulsion		12
5	Field induced cell proliferation and death in a thick epithelium		1
4	Cell dynamics underlying oriented growth of the Drosophila wing imaginal disc		2

5 3 A gelation transition enables the self-organization of bipolar metaphase spindles Co-condensation of proteins with single- and double-stranded DNA 1

Cell-autonomous generation of the wave pattern within the vertebrate segmentation clock