
Julio V Figueroa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9446463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagnostic Tools for the Identification of Babesia sp. in Persistently Infected Cattle. Pathogens, 2019, 8, 143.	1.2	41
2	Cloned lines of Babesia bovis differ in their ability to induce cerebral babesiosis in cattle. Parasitology Research, 2000, 86, 437-443.	0.6	34
3	Babesia bigemina sexual stages are induced in vitro and are specifically recognized by antibodies in the midgut of infected Boophilus microplus ticks. International Journal for Parasitology, 2004, 34, 1229-1236.	1.3	33
4	Nilgai Antelope in Northern Mexico as a Possible Carrier for Cattle Fever Ticks and Babesia bovis and Babesia bigemina. Journal of Wildlife Diseases, 2011, 47, 777-779.	0.3	26
5	<i>msaâ€1</i> and <i>msaâ€2c</i> Gene Analysis and Common Epitopes Assessment in Mexican <i>Babesia bovis</i> Isolates. Annals of the New York Academy of Sciences, 2008, 1149, 145-148.	1.8	22
6	Phylogenetic Analysis of Mexican <i>Babesia bovis</i> Isolates Using <i>msa</i> and <i>ssrRNA</i> Gene Sequences. Annals of the New York Academy of Sciences, 2008, 1149, 121-125.	1.8	22
7	Validation of a Competitive Enzyme-Linked Immunosorbent Assay for Detection of <i>Babesia bigemina</i> Antibodies in Cattle. Vaccine Journal, 2008, 15, 1316-1321.	3.2	22
8	Challenges in Tick-Borne Pathogen Detection: The Case for Babesia spp. Identification in the Tick Vector. Pathogens, 2021, 10, 92.	1.2	21
9	Using msa-2b as a molecular marker for genotyping Mexican isolates of Babesia bovis. Infection, Genetics and Evolution, 2009, 9, 1102-1107.	1.0	18
10	An Overview of Current Knowledge on in vitro Babesia Cultivation for Production of Live Attenuated Vaccines for Bovine Babesiosis in Mexico. Frontiers in Veterinary Science, 2020, 7, 364.	0.9	16
11	Bovine Babesiosis Live Vaccine Production. Annals of the New York Academy of Sciences, 2006, 1081, 405-416.	1.8	14
12	Babesia bigemina : Advances in continuous in vitro culture using serum-free medium supplemented with insulin, transferrin, selenite, and putrescine. Parasitology International, 2018, 67, 294-301.	0.6	13
13	Field Challenge of Cattle Vaccinated with a CombinedBabesia bovisandBabesia bigeminaFrozen Immunogen. Annals of the New York Academy of Sciences, 2004, 1026, 277-283.	1.8	11
14	Identification of a Coronin-Like Protein inBabesiaSpecies. Annals of the New York Academy of Sciences, 2004, 1026, 125-138.	1.8	9
15	Expression Analysis of Heat Shock Protein 20 and Rhoptryâ€associated Protein 1a in Sexual Stages and Kinetes of <i>Babesia bigemina</i> . Annals of the New York Academy of Sciences, 2008, 1149, 136-140.	1.8	9
16	Possible Association between Selected Tick-Borne Pathogen Prevalence and Rhipicephalus sanguineus sensu lato Infestation in Dogs from Juarez City (Chihuahua), Northwest Mexico–US Border. Pathogens, 2022, 11, 552.	1.2	9
17	Babesia bigemina: Sporozoite Isolation fromBoophilus microplusNymphs and Initial Immunomolecular Characterization. Annals of the New York Academy of Sciences, 2004, 1026, 222-231.	1.8	8
18	Primary Midgut, Salivary Gland, and Ovary Cultures fromBoophilus microplus. Annals of the New York Academy of Sciences, 2008, 1149, 49-52.	1.8	8

Julio V Figueroa

#	Article	IF	CITATIONS
19	Evaluation of a colorimetric Babesia bigemina-DNA probe within an epidemiological survey. Memorias Do Instituto Oswaldo Cruz, 1992, 87, 213-217.	0.8	7
20	Evaluation of Cattle Inoculated withBabesia bovisClones AdhesiveIn Vitroto Bovine Brain Endothelial Cells. Annals of the New York Academy of Sciences, 2006, 1081, 397-404.	1.8	7
21	Innovative Alternatives for Continuous In Vitro Culture of Babesia bigemina in Medium Free of Components of Animal Origin. Pathogens, 2020, 9, 343.	1.2	7
22	A Comparative Genomic Study of Attenuated and Virulent Strains of Babesia bigemina. Pathogens, 2021, 10, 318.	1.2	7
23	Molecular Detection of Tick-Borne Pathogens in American Bison (Bison bison) at El Uno Ecological Reserve, Janos, Chihuahua, Mexico. Pathogens, 2021, 10, 1428.	1.2	5
24	Immunization of Bovines with Concealed Antigens fromHaematobia irritans. Annals of the New York Academy of Sciences, 2004, 1026, 284-288.	1.8	4
25	Comparative Study of Indirect Fluorescent Antibody, ELISA, and Immunochromatography Tests for Serological Diagnosis of Bovine Babesiosis Caused by Babesia bovis. Animals, 2021, 11, 3358.	1.0	4
26	Identification of Common Antigens inBabesia bovis,B. bigemina, andB. divergens. Annals of the New York Academy of Sciences, 2006, 1081, 382-396.	1.8	3
27	Characterization of a Vitellogenin Gene Fragment in <i>Boophilus microplus</i> Ticks. Annals of the New York Academy of Sciences, 2008, 1149, 58-61.	1.8	3
28	Infection and Seroconversion of Susceptible Animals Introduced into a Babesiosis Endemic Area. Annals of the New York Academy of Sciences, 2008, 1149, 131-135.	1.8	3
29	Validation of an indirect ELISA using recombinant proteins as antigen to identify animals exposed to Babesia bigemina. Transboundary and Emerging Diseases, 2020, 67, 201-207.	1.3	3
30	Enhancement of the Mexican Bovine Babesiosis Vaccine Efficacy by Using <i>Lactobacillus casei</i> . Annals of the New York Academy of Sciences, 2008, 1149, 126-130.	1.8	2
31	Establishment of Babesia bovis In Vitro Culture Using Medium Free of Animal Products. Pathogens, 2021, 10, 770.	1.2	2
32	Draft Genome Sequences of Mexican Babesia bovis Virulent and Attenuated Strains. Microbiology Resource Announcements, 2022, , e0115321.	0.3	0
33	Clinical, Hematologic, and Molecular Findings of Babesia canis vogeli in a Naturally Infected Dog at Colima, México: First Case Reported. Southwestern Entomologist, 2021, 46, .	0.1	0