Yukihiko Sugimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/944644/publications.pdf

Version: 2024-02-01

191 papers

21,965 citations

69 h-index 145 g-index

195 all docs 195
docs citations

195 times ranked 18377 citing authors

#	Article	IF	CITATIONS
1	Prostanoid Receptors: Structures, Properties, and Functions. Physiological Reviews, 1999, 79, 1193-1226.	28.8	2,228
2	Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nature Medicine, 2005, 11, 90-94.	30.7	1,298
3	Prostaglandin E Receptors. Journal of Biological Chemistry, 2007, 282, 11613-11617.	3.4	990
4	Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature, 1997, 388, 678-682.	27.8	732
5	Prostaglandin D ₂ as a Mediator of Allergic Asthma. Science, 2000, 287, 2013-2017.	12.6	699
6	Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature, 1998, 395, 281-284.	27.8	630
7	Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apcî"716 knockout mice. Nature Medicine, 2001, 7, 1048-1051.	30.7	562
8	Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature, 1993, 365, 166-170.	27.8	548
9	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
10	Prostaglandin E2–EP4 signaling promotes immune inflammation through TH1 cell differentiation and TH17 cell expansion. Nature Medicine, 2009, 15, 633-640.	30.7	498
11	Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. British Journal of Pharmacology, 1997, 122, 217-224.	5.4	474
12	Sensitization of TRPV1 by EP1 and IP Reveals Peripheral Nociceptive Mechanism of Prostaglandins. Molecular Pain, 2005, 1, 1744-8069-1-3.	2.1	460
13	The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. Journal of Clinical Investigation, 2002, 109, 883-893.	8.2	374
14	Molecular mechanisms of diverse actions of prostanoid receptors. Lipids and Lipid Metabolism, 1995, 1259, 109-119.	2.6	355
15	The Role of Prostaglandin E Receptor Subtypes (EP1, EP2, EP3, and EP4) in Bone Resorption: An Analysis Using Specific Agonists for the Respective EPs. Endocrinology, 2000, 141, 1554-1559.	2.8	354
16	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
17	Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 414-421.	2.4	334
18	Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE2-Mediated Suppression of Antitumor Immunity. Cancer Discovery, 2017, 7, 522-538.	9.4	321

#	Article	IF	CITATIONS
19	Host Prostaglandin E2-EP3 Signaling Regulates Tumor-Associated Angiogenesis and Tumor Growth. Journal of Experimental Medicine, 2003, 197, 221-232.	8.5	316
20	Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4580-4585.	7.1	306
21	Patent Ductus Arteriosus and Neonatal Death in Prostaglandin Receptor EP4-Deficient Mice. Biochemical and Biophysical Research Communications, 1998, 246, 7-12.	2.1	305
22	Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis. Cancer Research, 2002, 62, 28-32.	0.9	286
23	Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nature Communications, 2019, 10, 4007.	12.8	231
24	<i>In situ</i> hybridization studies of prostacyclin receptor mRNA expression in various mouse organs. British Journal of Pharmacology, 1995, 116, 2828-2837.	5.4	226
25	The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. Journal of Clinical Investigation, 2002, 109, 883-893.	8.2	219
26	Suppression of allergic inflammation by the prostaglandin E receptor subtype EP3. Nature Immunology, 2005, 6, 524-531.	14.5	215
27	Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nature Immunology, 2014, 15, 1064-1069.	14.5	211
28	Impaired Bone Resorption to Prostaglandin E2 in Prostaglandin E Receptor EP4-knockout Mice. Journal of Biological Chemistry, 2000, 275, 19819-19823.	3.4	193
29	The Role of Prostaglandin E Receptor Subtypes (EP1, EP2, EP3, and EP4) in Bone Resorption: An Analysis Using Specific Agonists for the Respective EPs. Endocrinology, 2000, 141, 1554-1559.	2.8	169
30	Distribution and function of prostanoid receptors: studies from knockout mice. Progress in Lipid Research, 2000, 39, 289-314.	11.6	168
31	Characterization of EP receptor subtypes responsible for prostaglandin E2 -induced pain responses by use of EP1 and EP3 receptor knockout mice. British Journal of Pharmacology, 2001, 133, 438-444.	5.4	166
32	Regulation of TNF $\hat{l}\pm$ and interleukin-10 production by prostaglandins I2 and E2: studies with prostaglandin receptor-deficient mice and prostaglandin E-receptor subtype-selective synthetic agonists. Biochemical Pharmacology, 2001, 61, 1153-1160.	4.4	162
33	Third isoform of the prostaglandin-E-receptor EP3 subtype with different C-terminal tail coupling to both stimulation and inhibition of adenylate cyclase. FEBS Journal, 1993, 217, 313-318.	0.2	159
34	Mouse thromboxane A2 receptor: cDNA cloning, expression and Northern blot analysis. Biochemical and Biophysical Research Communications, 1992, 184, 1197-1203.	2.1	158
35	Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. International Immunology, 2019, 31, 597-606.	4.0	153
36	Characteristics of thermoregulatory and febrile responses in mice deficient in prostaglandin EP1 and EP3 receptors. Journal of Physiology, 2003, 551, 945-954.	2.9	153

3

#	Article	lF	Citations
37	The mouse prostaglandin E receptor EP2subtype: cloning, expression, and Northern blot analysis. FEBS Letters, 1995, 372, 151-156.	2.8	148
38	Chronic activation of the prostaglandin receptor EP4 promotes hyaluronan-mediated neointimal formation in the ductus arteriosus. Journal of Clinical Investigation, 2006, 116, 3026-3034.	8.2	146
39	Prostanoid receptor subtypes. Prostaglandins and Other Lipid Mediators, 2002, 68-69, 535-556.	1.9	145
40	Prostanoid receptors and their biological actions. Progress in Lipid Research, 1993, 32, 417-434.	11.6	135
41	Identification of prostaglandin E receptor †EP2' cloned from mastocytoma cells as EP4 subtype. FEBS Letters, 1995, 364, 339-341.	2.8	135
42	Mast cell maturation is driven via a group III phospholipase A2-prostaglandin D2–DP1 receptor paracrine axis. Nature Immunology, 2013, 14, 554-563.	14.5	122
43	Prostaglandin E2–EP3 Signaling Induces Inflammatory Swelling by Mast Cell Activation. Journal of Immunology, 2014, 192, 1130-1137.	0.8	120
44	Prostaglandin F2α-induced Expression of 20α-Hydroxysteroid Dehydrogenase Involves the Transcription Factor NUR77. Journal of Biological Chemistry, 2000, 275, 37202-37211.	3.4	118
45	Olfactory receptor for prostaglandin F2α mediates male fish courtship behavior. Nature Neuroscience, 2016, 19, 897-904.	14.8	114
46	Prostaglandin Receptors: Advances in the Study of EP3 Receptor Signaling. Journal of Biochemistry, 2002, 131, 781-784.	1.7	112
47	Crucial Involvement of the EP4 Subtype of Prostaglandin E Receptor in Osteoclast Formation by Proinflammatory Cytokines and Lipopolysaccharide. Journal of Bone and Mineral Research, 2010, 15, 218-227.	2.8	112
48	The Expression of Prostaglandin E Receptors EP2 and EP4 and Their Different Regulation by Lipopolysaccharide in C3H/HeN Peritoneal Macrophages. Journal of Immunology, 2001, 166, 4689-4696.	0.8	111
49	Increased Bleeding Tendency and Decreased Susceptibility to Thromboembolism in Mice Lacking the Prostaglandin E Receptor Subtype EP ₃ . Circulation, 2001, 104, 1176-1180.	1.6	108
50	Coiled-Coil Tagâ^'Probe System for Quick Labeling of Membrane Receptors in Living Cells. ACS Chemical Biology, 2008, 3, 341-345.	3.4	108
51	Competition for Mitogens Regulates Spermatogenic Stem Cell Homeostasis in an Open Niche. Cell Stem Cell, 2019, 24, 79-92.e6.	11.1	105
52	Impaired duodenal bicarbonate secretion and mucosal integrity in mice lacking prostaglandin E–receptor subtype EP3. Gastroenterology, 1999, 117, 1128-1135.	1.3	101
53	12-hydroxyheptadecatrienoic acid promotes epidermal wound healing by accelerating keratinocyte migration via the BLT2 receptor. Journal of Experimental Medicine, 2014, 211, 1063-1078.	8.5	101
54	Roles of prostaglandin receptors in female reproduction. Journal of Biochemistry, 2015, 157, 73-80.	1.7	100

#	Article	IF	CITATIONS
55	COX-2 and Prostaglandin EP3/EP4 Signaling Regulate the Tumor Stromal Proangiogenic Microenvironment via CXCL12-CXCR4 Chemokine Systems. American Journal of Pathology, 2010, 176, 1469-1483.	3.8	97
56	Cloning and expression of a cDNA for the human prostacyclin receptor. FEBS Letters, 1994, 344, 74-78.	2.8	96
57	Characterization of the LPS-Stimulated Expression of EP2 and EP4 Prostaglandin E Receptors in Mouse Macrophage-like Cell Line, J774.1. Biochemical and Biophysical Research Communications, 1998, 251, 727-731.	2.1	91
58	Prostaglandin E2 Receptors, EP2 and EP4, Differentially Modulate TNF-α and IL-6 Production Induced by Lipopolysaccharide in Mouse Peritoneal Neutrophils. Biochemical and Biophysical Research Communications, 2000, 278, 224-228.	2.1	89
59	Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface. Nature Chemical Biology, 2019, 15, 18-26.	8.0	85
60	Uterine Expression of Prostaglandin H2Synthase in Late Pregnancy and during Parturition in Prostaglandin F Receptor-Deficient Mice1. Endocrinology, 2000, 141, 315-324.	2.8	82
61	cDNA-derived amino acid sequence of L-histidine decarboxylase from mouse mastocytoma P-815 cells. FEBS Letters, 1990, 276, 214-218.	2.8	80
62	Distribution of prostaglandin E receptors in the rat gastrointestinal tract. Prostaglandins, 1997, 53, 199-216.	1.2	80
63	Impaired Bone Resorption by Lipopolysaccharide In Vivo in Mice Deficient in the Prostaglandin E Receptor EP4 Subtype. Infection and Immunity, 2000, 68, 6819-6825.	2.2	80
64	Prostanoid EP4 receptor is involved in suppression of 3T3-L1 adipocyte differentiation. Biochemical and Biophysical Research Communications, 2004, 322, 1066-1072.	2.1	80
65	Selective Coupling of Prostaglandin E Receptor EP3D to Gi and Gs through Interaction of α-Carboxylic Acid of Agonist and Arginine Residue of Seventh Transmembrane Domain. Journal of Biological Chemistry, 1995, 270, 16122-16127.	3.4	78
66	Prostaglandin E receptors. Journal of Lipid Mediators and Cell Signalling, 1995, 12, 379-391.	0.9	76
67	Birth Regulates the Initiation of Sensory Map Formation through Serotonin Signaling. Developmental Cell, 2013, 27, 32-46.	7.0	76
68	Major roles of prostanoid receptors IP and EP3 in endotoxin-induced enhancement of pain perception11Abbreviations:, prostaglandin E receptor subtype 1; IP, prostaglandin I receptor; LPS, lipopolysaccharide; and WT, wild-type mice Biochemical Pharmacology, 2001, 62, 157-160.	4.4	74
69	Role of cyclooxygenase-2-mediated prostaglandin E2-prostaglandin E receptor 4 signaling in cardiac reprogramming. Nature Communications, 2019, 10, 674.	12.8	74
70	Prostaglandin E ₂ Inhibits Elastogenesis in the Ductus Arteriosus via EP4 Signaling. Circulation, 2014, 129, 487-496.	1.6	73
71	Abnormal Epithelial Cell Polarity and Ectopic Epidermal Growth Factor Receptor (EGFR) Expression Induced in Emx2 KO Embryonic Gonads. Endocrinology, 2010, 151, 5893-5904.	2.8	72
72	Characterization of the signal transduction of prostaglandin E receptor EP1 subtype in cDNA-transfected Chinese hamster ovary cells. Biochimica Et Biophysica Acta - General Subjects, 1995, 1244, 41-48.	2.4	70

#	Article	IF	CITATIONS
73	Expression of Messenger RNA for Prostaglandin E Receptor Subtypes EP4/EP2 and Cyclooxygenase Isozymes in Mouse Periovulatory Follicles and Oviducts During Superovulation1. Biology of Reproduction, 2003, 68, 804-811.	2.7	70
74	Roles of Prostanoids Revealed From Studies Using Mice Lacking Specific Prostanoid Receptors The Japanese Journal of Pharmacology, 2000, 83, 279-285.	1.2	67
75	The intrinsic prostaglandin E2–EP4 system of the renal tubular epithelium limits the development of tubulointerstitial fibrosis in mice. Kidney International, 2012, 82, 158-171.	5.2	65
76	Involvement of Prostaglandin E2 in Production of Amyloid- \hat{l}^2 Peptides Both in Vitro and in Vivo. Journal of Biological Chemistry, 2007, 282, 32676-32688.	3.4	64
77	Inhibition of EP4 Signaling Attenuates Aortic Aneurysm Formation. PLoS ONE, 2012, 7, e36724.	2.5	63
78	Expressions of cyclooxygenase-2 and prostaglandin E-receptors in carcinoma of the gallbladder: crucial role of arachidonate metabolism in tumor growth and progression. Clinical Cancer Research, 2002, 8, 1157-67.	7.0	59
79	Roles of a prostaglandin Eâ€type receptor, EP3, in upregulation of matrix metalloproteinaseâ€9 and vascular endothelial growth factor during enhancement of tumor metastasis. Cancer Science, 2009, 100, 2318-2324.	3.9	56
80	Expression of messenger RNA for the prostaglandin D receptor in the leptomeninges of the mouse brain. FEBS Letters, 1997, 417, 53-56.	2.8	55
81	Prostaglandin E2 Stimulates the Production of Amyloid-β Peptides through Internalization of the EP4 Receptor. Journal of Biological Chemistry, 2009, 284, 18493-18502.	3.4	55
82	Timely interaction between prostaglandin and chemokine signaling is a prerequisite for successful fertilization. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14539-14544.	7.1	54
83	Contribution of the two Gs-coupled PGE2-receptors EP2-receptor and EP4-receptor to the inhibition by PGE2 of the LPS-induced TNFα-formation in Kupffer cells from EP2-or EP4-receptor-deficient mice. Pivotal role for the EP4-receptor in wild type Kupffer cells. Journal of Hepatology, 2002, 36, 328-334.	3.7	52
84	Ca ²⁺ influxâ€mediated histamine synthesis and ILâ€6 release in mast cells activated by monomeric IgE. European Journal of Immunology, 2005, 35, 460-468.	2.9	47
85	Impaired Mast Cell Maturation and Degranulation and Attenuated Allergic Responses in <i>Ndrg1</i> -Deficient Mice. Journal of Immunology, 2007, 178, 7042-7053.	0.8	47
86	Cloning and expression of a cDNA for rat prostaglandin F2α receptor. Prostaglandins, 1994, 48, 31-41.	1.2	46
87	Cooperative Therapeutic Action of Retinoic Acid Receptor and Retinoid X Receptor Agonists in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 42, 587-605.	2.6	45
88	Parturition and Recruitment of Macrophages in Cervix of Mice Lacking the Prostaglandin F Receptor 1. Biology of Reproduction, 2008, 78, 438-444.	2.7	44
89	Autotaxin–lysophosphatidic acid– <scp>LPA</scp> ₃ signaling at the embryoâ€epithelial boundary controls decidualization pathways. EMBO Journal, 2017, 36, 2146-2160.	7.8	44
90	Roles of prostaglandin E receptors in mesangial cells under high-glucose conditions. Kidney International, 1999, 56, 589-600.	5.2	43

#	Article	IF	CITATIONS
91	Quantification of the number of EP3 receptors on a living CHO cell surface by the AFM. Ultramicroscopy, 2006, 106, 652-662.	1.9	42
92	cDNA cloning of a thromboxane A2 receptor from rat astrocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1995, 1265, 220-223.	4.1	39
93	Expression ofL-histidine decarboxylase in granules of elicited mouse polymorphonuclear leukocytes. European Journal of Immunology, 2004, 34, 1472-1482.	2.9	39
94	Prostaglandin E2-EP4 signaling suppresses adipocyte differentiation in mouse embryonic fibroblasts via an autocrine mechanism. Journal of Lipid Research, 2011, 52, 1500-1508.	4.2	39
95	Establishment of the culture model system that reflects the process of terminal differentiation of connective tissueâ€type mast cells. FEBS Letters, 2008, 582, 1444-1450.	2.8	38
96	Activation of Histidine Decarboxylase through Post-translational Cleavage by Caspase-9 in a Mouse Mastocytoma P-815. Journal of Biological Chemistry, 2007, 282, 13438-13446.	3.4	37
97	Cutaneous p38 mitogen-activated protein kinase activation triggers psoriatic dermatitis. Journal of Allergy and Clinical Immunology, 2019, 144, 1036-1049.	2.9	37
98	â€~Distinct Cellular Localization of the Messenger Ribonucleic Acid for Prostaglandin E Receptor Subtypes in the Mouse Uterus during Pseudopregnancy1. Endocrinology, 1997, 138, 344-350.	2.8	36
99	Host prostaglandin EP3 receptor signaling relevant to tumor-associated lymphangiogenesis. Biomedicine and Pharmacotherapy, 2010, 64, 101-106.	5.6	36
100	Eosinophils control the resolution of inflammation and draining lymph node hypertrophy through the proresolving mediators and CXCL13 pathway in mice. FASEB Journal, 2014, 28, 4036-4043.	0.5	36
101	Histamine synthesis is required for granule maturation in murine mast cells. European Journal of Immunology, 2014, 44, 204-214.	2.9	36
102	Epithelial TRAF6 drives IL-17–mediated psoriatic inflammation. JCI Insight, 2018, 3, .	5.0	36
103	Expression of the prostaglandin F receptor (FP) gene along the mouse genitourinary tract. American Journal of Physiology - Renal Physiology, 2003, 284, F1164-F1170.	2.7	35
104	Direct Melanoma Cell Contact Induces Stromal Cell Autocrine Prostaglandin E2-EP4 Receptor Signaling That Drives Tumor Growth, Angiogenesis, and Metastasis. Journal of Biological Chemistry, 2015, 290, 29781-29793.	3.4	35
105	Expression of l-Histidine Decarboxylase in Mouse Male Germ Cells. Journal of Biological Chemistry, 2002, 277, 14211-14215.	3.4	34
106	Improvement of cognitive function in Alzheimer's disease model mice by genetic and pharmacological inhibition of the EP ₄ receptor. Journal of Neurochemistry, 2012, 120, 795-805.	3.9	34
107	Role of Prostaglandin H2 Synthase 2 in Murine Parturition: Study on Ovariectomy-Induced Parturition in Prostaglandin F Receptor-Deficient Mice1. Biology of Reproduction, 2003, 69, 195-201.	2.7	33
108	Dermal $V\hat{l}^34 + \hat{l}^3\hat{l}'T$ Cells Possess a Migratory Potency to the Draining Lymph Nodes and Modulate CD8 + T-Cell Activity through TNF- \hat{l} ± Production. Journal of Investigative Dermatology, 2015, 135, 1007-1015.	0.7	33

#	Article	IF	CITATIONS
109	The C-Terminus of the Prostaglandin-E-Receptor EP3 Subtype is Essential for Activation of GTP-Binding Protein. FEBS Journal, 1994, 224, 161-166.	0.2	32
110	Functional interaction of prostaglandin E receptor EP3 subtype with guanine nucleotide-binding proteins, showing low-affinity ligand binding. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1175, 343-350.	4.1	31
111	Mapping of the Genes Encoding Mouse Thromboxane A2 Receptor and Prostaglandin E Receptor Subtypes EP2 and EP3. Genomics, 1994, 19, 585-588.	2.9	31
112	Molecular biology of histidine decarboxylase and prostaglandin receptors. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2010, 86, 848-866.	3.8	31
113	Possible coupling of prostaglandin E receptor EP1 to TRP5 expressed in Xenopus laevis oocytes. Biochemical and Biophysical Research Communications, 2002, 298, 398-402.	2.1	30
114	RhoA/Rho Kinase Signaling in the Cumulus Mediates Extracellular Matrix Assembly. Endocrinology, 2009, 150, 3345-3352.	2.8	30
115	Prostaglandin E2-EP4 Axis Promotes Lipolysis and Fibrosis in Adipose Tissue Leading to Ectopic Fat Deposition and Insulin Resistance. Cell Reports, 2020, 33, 108265.	6.4	30
116	Characterization of the gene for the mouse prostaglandin E receptor subtype EP2: tissue-specific initiation of transcription in the macrophage and the uterus. Biochemical Journal, 1998, 330, 1115-1121.	3.7	29
117	Augmentation of Receptor-Mediated Adenylyl Cyclase Activity by Gi-Coupled Prostaglandin Receptor Subtype EP3 in a $G^{\hat{1}\hat{2}\hat{3}}$ Subunit-Independent Manner. Biochemical and Biophysical Research Communications, 2002, 290, 162-168.	2.1	29
118	Microarray evaluation of EP4 receptor-mediated prostaglandin E2 suppression of 3T3-L1 adipocyte differentiation. Biochemical and Biophysical Research Communications, 2004, 322, 911-917.	2.1	29
119	Copresence of prostaglandin EP2 and EP3 receptors on gastric enterochromaffin-like cell carcinoid in African rodents. Gastroenterology, 1995, 109, 341-347.	1.3	28
120	Expression of Prostaglandin E2 Receptor Subtypes in Mouse Hair Follicles. Biochemical and Biophysical Research Communications, 2002, 290, 696-700.	2.1	28
121	Prostaglandin E receptor EP 3 deficiency modifies tumor outcome in mouse two-stage skin carcinogenesis. Carcinogenesis, 2005, 26, 2116-2122.	2.8	28
122	Involvement of cyclooxygenase-2 and EP prostaglandin receptor in acute herpetic but not postherpetic pain in mice. Neuropharmacology, 2005, 49, 283-292.	4.1	28
123	Effects of the Selective EP2 Receptor Agonist Omidenepag on Adipocyte Differentiation in 3T3-L1 Cells. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 162-169.	1.4	27
124	Uterine Expression of Prostaglandin H2 Synthase in Late Pregnancy and during Parturition in Prostaglandin F Receptor-Deficient Mice. Endocrinology, 2000, 141, 315-324.	2.8	27
125	Characterization of the mouse prostaglandin F receptor gene: a transgenic mouse study of a regulatory region that controls its expression in the stomach and kidney but not in the ovary. Genes To Cells, 2003, 2, 571-580.	1.2	26
126	International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E ₂ Receptors (EP1–4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacological Reviews, 2020, 72, 910-968.	16.0	26

#	Article	IF	Citations
127	TEI-3356, a highly selective agonist for the prostaglandin EP3 receptor. Prostaglandins, 1994, 48, 275-283.	1.2	25
128	Attenuated Cyclooxygenase-2 Expression Contributes to Patent Ductus Arteriosus in Preterm Mice. Pediatric Research, 2006, 60, 669-674.	2.3	25
129	Bone marrow-derived EP3-expressing stromal cells enhance tumor-associated angiogenesis and tumor growth. Biochemical and Biophysical Research Communications, 2009, 382, 720-725.	2.1	25
130	Functional evidence for interaction between prostaglandin EP3 and $\hat{\mathbb{P}}$ -opioid receptor pathways in tactile pain induced by human immunodeficiency virus type-1 (HIV-1) glycoprotein gp120. Neuropharmacology, 2003, 45, 96-105.	4.1	24
131	Mapping of the Genes Encoding Mouse Prostaglandin D, E, and F and Prostacyclin Receptors. Genomics, 1996, 32, 285-288.	2.9	22
132	Changes in the Expression of Steroidogenic and Antioxidant Genes in the Mouse Corpus Luteum During Luteolysis 1. Biology of Reproduction, 2005, 72, 1134-1141.	2.7	22
133	Identification and characterization of a novel progesterone receptor-binding element in the mouse prostaglandin E receptor subtype EP2 gene. Genes To Cells, 2003, 8, 747-758.	1.2	21
134	Prostanoid receptors and acute inflammation in skin. Biochimie, 2014, 107, 78-81.	2.6	21
135	Induction of Adherent Activity in Mastocytoma P-815 Cells by the Cooperation of Two Prostaglandin E2 Receptor Subtypes, EP3 and EP4. Journal of Biological Chemistry, 2003, 278, 17977-17981.	3.4	20
136	Prostaglandin E2Stimulates Granulocyte Colony-Stimulating Factor Production via the Prostanoid EP2 Receptor in Mouse Peritoneal Neutrophils. Journal of Immunology, 2005, 175, 2606-2612.	0.8	19
137	Prostaglandin E2 Attenuates Preoptic Expression of GABAA Receptors via EP3 Receptors. Journal of Biological Chemistry, 2008, 283, 11064-11071.	3.4	19
138	Involvement of CD44 in mast cell proliferation during terminal differentiation. Laboratory Investigation, 2009, 89, 446-455.	3.7	19
139	Characterization of the prostaglandin E receptor expressed on a cultured mast cell line, BNu-2c13. Biochemical Pharmacology, 1993, 46, 863-869.	4.4	18
140	Apoptosis and Related Proteins in Placenta of Intrauterine Fetal Death in Prostaglandin F Receptor-Deficient Mice1. Biology of Reproduction, 2003, 68, 1968-1974.	2.7	18
141	Prostaglandin I ₂ Plays a Key Role in Zymosan-Induced Mouse Pleurisy. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 601-609.	2.5	18
142	Prostaglandin EP3 receptor superactivates adenylyl cyclase via the Gq/PLC/Ca2+ pathway in a lipid raft-dependent manner. Biochemical and Biophysical Research Communications, 2009, 389, 678-682.	2.1	18
143	Critical Role of Protein Kinase C \hat{l}^2 II in Activation of Mast Cells by Monomeric IgE. Journal of Biological Chemistry, 2005, 280, 38976-38981.	3.4	17
144	Expression profiling of cumulus cells reveals functional changes during ovulation and central roles of prostaglandin EP2 receptor in cAMP signaling. Biochimie, 2010, 92, 665-675.	2.6	17

#	Article	IF	CITATIONS
145	Altered gene expression of transcriptional regulatory factors in tumor marker-positive cells during chemically induced hepatocarcinogenesis. Toxicology Letters, 2006, 167, 106-113.	0.8	16
146	Induced Prostanoid Synthesis Regulates the Balance between Th1- and Th2-Producing Inflammatory Cytokines in the Thymus of Diet-Restricted Mice. Biological and Pharmaceutical Bulletin, 2020, 43, 649-662.	1.4	15
147	Essential role of EP3 subtype in prostaglandin E ₂ -induced adhesion of mouse cultured and peritoneal mast cells to the Arg-Gly-Asp-enriched matrix. American Journal of Physiology - Cell Physiology, 2008, 295, C1427-C1433.	4.6	14
148	Molecular and pharmacological characterization of zebrafish †relaxant†m prostanoid receptors. Biochemical and Biophysical Research Communications, 2013, 436, 685-690.	2.1	14
149	Prostaglandin E receptors in bile ducts of hepatolithiasis patients and the pathobiological significance for cholangitis. Clinical Gastroenterology and Hepatology, 2003, 1, 285-296.	4.4	13
150	A Cluster of Aromatic Amino Acids in the i2 Loop Plays a Key Role for Gs Coupling in Prostaglandin EP2 and EP3 Receptors. Journal of Biological Chemistry, 2004, 279, 11016-11026.	3.4	13
151	Oxytocin-induced phasic and tonic contractions are modulated by the contractile machinery rather than the quantity of oxytocin receptor. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E992-E999.	3.5	13
152	Characterization of gene expression profiles for different types of mast cells pooled from mouse stomach subregions by an RNA amplification method. BMC Genomics, 2009, 10, 35.	2.8	13
153	Synthesis and evaluation of a radioiodinated lumiracoxib derivative for the imaging of cyclooxygenase-2 expression. Nuclear Medicine and Biology, 2009, 36, 869-876.	0.6	13
154	Functional domains essential for Gs activity in prostaglandin EP2 and EP3 receptors. Life Sciences, 2003, 74, 135-141.	4.3	12
155	Molecular and pharmacological characterization of zebrafish †contractile†and †inhibitory†prostanoid receptors. Biochemical and Biophysical Research Communications, 2013, 438, 353-358.	2.1	12
156	Prostaglandin E ₂ and its receptor EP2 trigger signaling that contributes to YAPâ€mediated cell competition. Genes To Cells, 2020, 25, 197-214.	1.2	12
157	Roles of prostaglandin E ₂ -EP1 receptor signaling in regulation of gastric motor activity and emptying. American Journal of Physiology - Renal Physiology, 2010, 299, G1078-G1086.	3.4	11
158	Electroconvulsive seizure-induced changes in gene expression in the mouse hypothalamic paraventricular nucleus. Journal of Psychopharmacology, 2013, 27, 1058-1069.	4.0	11
159	Expression of leukotriene B4 receptor 1 defines functionally distinct DCs that control allergic skin inflammation. Cellular and Molecular Immunology, 2021, 18, 1437-1449.	10.5	11
160	Induction of prostaglandin I2 receptor by tumor necrosis factor \hat{l}_{\pm} in osteoblastic MC3T3-E1 cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1441, 69-76.	2.4	10
161	Reduction of aquaporin-8 on fetal membranes under oligohydramnios in mice lacking prostaglandin F2α receptor. Journal of Obstetrics and Gynaecology Research, 2006, 32, 373-378.	1.3	10
162	Infusion of oxytocin induces successful delivery in prostanoid FP-receptor-deficient mice. Molecular and Cellular Endocrinology, 2008, 283, 32-37.	3.2	10

#	Article	IF	Citations
163	Enantioselective inhibitory abilities of enantiomers of notoamides against RANKL-induced formation of multinuclear osteoclasts. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4975-4978.	2.2	10
164	Apoptosis and Related Proteins during Parturition in Prostaglandin F Receptor-Deficient Mice. Biochemical and Biophysical Research Communications, 2002, 292, 675-681.	2.1	9
165	Electroconvulsive seizures activate anorexigenic signals in the ventromedial nuclei of the hypothalamus. Neuropharmacology, 2013, 71, 164-173.	4.1	9
166	Prolonged gestation does not extend survival of uterine Natural Killer lymphocytes in mice deleted in the receptor for prostaglandin F2α. Journal of Reproductive Immunology, 2000, 46, 125-129.	1.9	8
167	Co-localization of prostaglandin F synthase, cyclooxygenase-1 and prostaglandin F receptor in mouse Leydig cells. Histochemistry and Cell Biology, 2007, 128, 317-322.	1.7	8
168	p13 overexpression in pancreatic \hat{l}^2 -cells ameliorates type 2 diabetes in \hat{A} high-fat-fed mice. Biochemical and Biophysical Research Communications, 2015, 461, 612-617.	2.1	8
169	Functional Hierarchy of Uterotonics Required for Successful Parturition in Mice. Endocrinology, 2019, 160, 2800-2810.	2.8	8
170	Taichunins E–T, Isopimarane Diterpenes and a 20-nor-Isopimarane, from Aspergillus taichungensis (IBT) Tj ETÇ Journal of Natural Products, 2021, 84, 2475-2485.	9q0 0 0 rgE 3.0	BT /Overlock 1 8
171	Amakusamine from a <i>Psammocinia</i> sp. Sponge: Isolation, Synthesis, and SAR Study on the Inhibition of RANKL-Induced Formation of Multinuclear Osteoclasts. Journal of Natural Products, 2021, 84, 2738-2743.	3.0	8
172	Advanced Oxidation Protein Products Contribute to Renal Tubulopathy via Perturbation of Renal Fatty Acids. Kidney360, 2020, 1, 781-796.	2.1	6
173	Roles of Prostanoids Revealed From Studies Using Mice Lacking Specific Prostanoid Receptors. The Japanese Journal of Pharmacology, 2000, 83, 279-285.	1.2	5
174	An aromatic amino acid within intracellular loop 2 of the prostaglandin EP2 receptor is a prerequisite for selective association and activation of $\hat{Gl}\pm s$. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 615-622.	2.4	5
175	Essential role of prostaglandin E2 and the EP3 receptor in lymphatic vessel development during zebrafish embryogenesis. Scientific Reports, 2019, 9, 7650.	3. 3	5
176	Lipocalin-type prostaglandin D synthase regulates light-induced phase advance of the central circadian rhythm in mice. Communications Biology, 2020, 3, 557.	4.4	5
177	Restriction of Mast Cell Proliferation through Hyaluronan Synthesis by Co-cultured Fibroblasts. Biological and Pharmaceutical Bulletin, 2012, 35, 408-412.	1.4	4
178	Inhibition of Both Cyclooxygenase-1 and -2 Promotes Epicutaneous Th2 and Th17 Sensitization and Allergic Airway Inflammation on Subsequent Airway Exposure to Protease Allergen in Mice. International Archives of Allergy and Immunology, 2021, 182, 788-799.	2.1	3
179	Prostaglandin E2 and F2α in mouse reproduction. International Congress Series, 2002, 1233, 397-404.	0.2	2
180	Prostaglandin E Receptor Subtypes EP2 and EP4 Promote TH1 Cell Differentiation and TH17 Cell Expansion Through Different Signaling Modules. Inflammation Research, 2009, 58, S244-S248.	4.0	2

#	Article	IF	CITATIONS
181	Prostaglandin D2 elicits the reversible neurite retraction in hypothalamic cell line. Biochemical and Biophysical Research Communications, 2016, 470, 804-810.	2.1	2
182	Prostanoid receptors (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
183	Intracellular third loop–C-terminal tail interaction in prostaglandin EP3β receptor. Biochemical and Biophysical Research Communications, 2008, 371, 846-849.	2.1	1
184	Comparative gene expression profiles in pancreatic islets associated with agouti yellow mutation and PACAP overexpression in mice. Biochemistry and Biophysics Reports, 2015, 2, 179-183.	1.3	1
185	Prostaglandin receptors IP and EP mediating regulation of tumor necrosis factor-alpha and interleukin-10 production. International Congress Series, 2002, 1233, 479-484.	0.2	O
186	Insight into Prostanoid Functions: Lessons from Receptor-Knockout Mice., 0,, 219-225.		0
187	Gene profiles of electroconvulsive seizures in the mouse paraventricular nucleus of hypothalamus. Neuroscience Research, 2010, 68, e316.	1.9	O
188	Induction of Prostaglandin I2 Receptor in Murine Osteoblastic Cell. Medical Science Symposia Series, 2001, , 103-106.	0.0	0
189	12-hydroxyheptadecatrienoic acid promotes epidermal wound healing by accelerating keratinocyte migration via the BLT2 receptor. Journal of Cell Biology, 2014, 205, 2054OIA98.	5.2	O
190	Pathophysiological Roles of Prostanoid Receptors in the Central Nervous System., 2015,, 59-68.		0
191	Effects of an ï‰3 fatty acid-biased diet on luteolysis, parturition, and uterine prostanoid synthesis in pregnant mice. Biochemical and Biophysical Research Communications, 2022, 589, 139-146.	2.1	O