Atsushi Takei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9445508/publications.pdf

Version: 2024-02-01

933447 794594 23 366 10 19 citations h-index g-index papers 23 23 23 480 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mechanics of wrinkle/ridge transitions in thin film/substrate systems. Journal of the Mechanics and Physics of Solids, 2015, 81, 22-40.	4.8	68
2	Forbidden Directions for the Fracture of Thin Anisotropic Sheets: An Analogy with the Wulff Plot. Physical Review Letters, 2013, 110, 144301.	7.8	55
3	Ridge Localizations and Networks in Thin Films Compressed by the Incremental Release of a Large Equiâ€biaxial Preâ€stretch in the Substrate. Advanced Materials, 2014, 26, 4061-4067.	21.0	47
4	Capillary motor driven by electrowetting. Lab on A Chip, 2010, 10, 1781.	6.0	33
5	High-Aspect-Ratio Ridge Structures Induced by Plastic Deformation as a Novel Microfabrication Technique. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24230-24237.	8.0	28
6	Stretch-induced wrinkles in reinforced membranes: From out-of-plane to in-plane structures. Europhysics Letters, 2011, 96, 64001.	2.0	25
7	Capillary Torque Caused by a Liquid Droplet Sandwiched between Two Plates. Langmuir, 2010, 26, 2497-2504.	3.5	22
8	Angle-Tunable Liquid Wedge Prism Driven by Electrowetting. Journal of Microelectromechanical Systems, 2007, 16, 1537-1542.	2.5	17
9	Stretchable and durable Parylene/PEDOT:PSS/Parylene multi-layer induced by plastic deformation for stretchable device using functionalized PDMS. AIP Advances, 2020, 10, 025205.	1.3	15
10	A thin electrowetting controlled optical system with pan/tilt and variable focus functions. Sensors and Actuators A: Physical, 2013, 194, 112-118.	4.1	11
11	Mechanisms of Adhesive Micropatterning of Functional Colloid Thin Layers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40602-40612.	8.0	11
12	Micro-transfer patterning of dense nanoparticle layers: roles of rheology, adhesion and fracture in transfer dynamics. Soft Matter, 2020, 16, 3276-3284.	2.7	6
13	Micro Liquid Prism., 2009,,.		5
14	Microprism using capillary alignment. Journal of Micromechanics and Microengineering, 2011, 21, 085009.	2.6	5
15	Wettability control with self-assembler patterning for printed electronics. Japanese Journal of Applied Physics, 2019, 58, 041002.	1.5	5
16	Crack propagation in porous polymer sheets with different pore sizes. MRS Communications, 2018, 8, 1477-1482.	1.8	4
17	Scanning micromirror using deformation of a Parylene-Encapsulated Liquid Structure. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	2
18	Wrinkle meets MEMS: Tunable grating and hydrophobic surface. , 2013, , .		2

Atsushi Takei

#	Article	IF	CITATION
19	Micro arch-bridge structured surface fabricated by kirigami-on-elastomer approach for liquid-dependent iso/anisotropic wetting. Applied Physics Letters, 2017, 110, .	3.3	2
20	Capillary Micro Motor. Microtechnology and MEMS, 2013, , 199-209.	0.2	1
21	Stretchable Light-Emitting Device Using a Film/Elastomer Bilayer System with Electrodes Patterned by Printed Electronics Technique. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2020, 33, 413-417.	0.3	1
22	Robustness of organic physically unclonable function with buskeeper circuit for flexible security devices. Japanese Journal of Applied Physics, 2022, 61, SE1016.	1.5	1
23	Capillary Torque. Microtechnology and MEMS, 2013, , 71-91.	0.2	0