Zu-hong Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9445506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An unreported peak of the electroluminescence turn-on transience from OLEDs with electron or hole potential well. Journal of Luminescence, 2022, 246, 118850.	3.1	0
2	Investigations of microscopic mechanisms in exciplex-based devices with isomers of mCBP and CBP as donors via magneto-electroluminescence. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 087201.	0.5	7
3	Conversions from Normal to Abnormal Currentâ€Dependent ISC and from Abnormal to Normal Currentâ€Dependent RISC Processes in Exciplexâ€Based OLEDs. Advanced Materials Interfaces, 2022, 9, .	3.7	5
4	Realization of H-Type Aggregation in Rubrene-Doped OLEDs and Its Induced Enhancement of Delayed Fluorescence. Journal of Physical Chemistry C, 2022, 126, 9456-9465.	3.1	5
5	Observation of Reverse Intersystemâ€Crossing From the Upperâ€Level Triplet to Lowest Singlet Excitons (T ₂ → S ₁) in Tetra(<i>t</i> â€butyl)rubreneâ€Based OLEDs for Enhanced Lightâ€Emission. Advanced Functional Materials, 2022, 32, .	14.9	6
6	Slow recombination of the de-trapped carriers from doped OLEDs induced by spontaneous orientation polarization. Journal of Luminescence, 2022, 249, 119063.	3.1	2
7	Efficient tuning of the conversion from ISC to high-level RISC <i>via</i> adjusting the triplet energies of charge-transporting layers in rubrene-doped OLEDs. Journal of Materials Chemistry C, 2021, 9, 2775-2783.	5.5	12
8	The origin of interlayer-induced significant enhancement of EQE in CzDBA-based OLEDs studied by magneto-electroluminescence. Applied Physics Letters, 2021, 118, .	3.3	7
9	Room-Temperature Observation for Reverse Intersystem Crossing in Exciplex-Based OLEDs with Balanced Charge Injection. ACS Applied Electronic Materials, 2021, 3, 3034-3043.	4.3	16
10	Temperature-dependent recombination dynamics and electroluminescence characteristics of colloidal CdSe/ZnS core/shell quantum dots. Applied Physics Letters, 2021, 119, .	3.3	10
11	Highly efficient quasi-two dimensional perovskite light-emitting diodes by phase tuning. Organic Electronics, 2021, 98, 106295.	2.6	12
12	An unprecedented spike of the electroluminescence turn-on transience from guest-doped OLEDs with strong electron-donating abilities of host carbazole groups. Materials Horizons, 2021, 8, 2785-2796.	12.2	6
13	Dynamic Behaviors of Exciplex States in Rubrene/ <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mrow><mml:mi mathvariant="normal">C</mml:mi </mml:mrow></mml:mrow><mml:mn>60</mml:mn></mml:msub><td>3.8 h></td><td>8</td></mmi:math 	3.8 h>	8
14	-Based OLEDs with Sub-Band-Gap Turn-On Electroluminescence. Physical Review Applied, 2021, 16, . Composite Hole Transport Layer Consisting of High-Mobility Polymer and Small Molecule With Deep-Lying HOMO Level for Efficient Quantum Dot Light-Emitting Diodes. IEEE Electron Device Letters, 2020, 41, 80-83.	3.9	19
15	Abnormal Reverse Intersystem Crossing of Polaron-Pair States and Its Conversion to Intersystem Crossing via the Regulation of Intermolecular Electron-Hole Spacing Distance. Physical Review Applied, 2020, 14, .	3.8	19
16	Full Confinement of Highâ€Lying Triplet States to Achieve Highâ€Level Reverse Intersystem Crossing in Rubrene: A Strategy for Obtaining the Recordâ€High EQE of 16.1% with Low Efficiency Rollâ€Off. Advanced Functional Materials, 2020, 30, 2005765.	14.9	33
17	High-performance near-infrared organic phototransistors based on diketopyrrolopyrrole conjugated polymers with partial removal of long branched alkyl side chains. Journal of Materials Chemistry C, 2020, 8, 16915-16922.	5.5	12
18	Large Performance Enhancement in All-Solution-Processed, Full-Color, Inverted Quantum-Dot Light-Emitting Diodes Using Graphene Oxide Doped Hole Injection Layer. Journal of Physical Chemistry C, 2020, 124, 11617-11624.	3.1	11

ZU-HONG XIONG

#	Article	IF	CITATIONS
19	Efficient quasi-two dimensional perovskite light-emitting diodes using a cage-type additive. Journal of Materials Chemistry C, 2020, 8, 9845-9853.	5.5	14
20	Achievement of High-Level Reverse Intersystem Crossing in Rubrene-Doped Organic Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2020, 11, 2804-2811.	4.6	31
21	Abnormal current dependence of high-level reverse intersystem crossing induced by Dexter energy transfer from hole-transporting layer. Journal of Materials Chemistry C, 2020, 8, 11061-11069.	5.5	1
22	Highly efficient and bright red quantum dot light-emitting diodes with balanced charge injection. Organic Electronics, 2020, 81, 105683.	2.6	13
23	Trap-Enhanced Intersystem Crossing in Tris(8-hydroxyquinoline) Aluminum-Based Organic Light-Emitting Diodes via In Situ Heating. Journal of Physical Chemistry C, 2020, 124, 3218-3223.	3.1	2
24	Enhanced Electroluminescence Efficiency Using Reverse Intersystem Crossing Induced by the Strong Triplet Fusion of Rubrene as a Sensitizer. Journal of Physical Chemistry C, 2020, 124, 9451-9459.	3.1	10
25	High efficiency green perovskite light-emitting diodes based on exciton blocking layer. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 038501.	0.5	2
26	Spin-pair state-induced exceptional magnetic field responses from a thermally activated delayed fluorescence-assisted fluorescent material doping system. Physical Chemistry Chemical Physics, 2019, 21, 17673-17686.	2.8	6
27	Direct observation of reverse intersystem crossing from fully confined triplet exciplexes using magneto-electroluminescence. Journal of Materials Chemistry C, 2019, 7, 10841-10850.	5.5	15
28	Efficient halide perovskite light-emitting diodes with emissive layer consisted of multilayer coatings. Journal of Applied Physics, 2019, 126, 165502.	2.5	4
29	Large current efficiency enhancement in the CsPbBr3 perovskite light-emitting diodes assisted by an ultrathin buffer layer. Journal of Luminescence, 2019, 209, 251-257.	3.1	9
30	Extraordinary magnetic field effects mediated by spin-pair interaction and electron mobility in thermally activated delayed fluorescence-based OLEDs with quantum-well structure. Journal of Materials Chemistry C, 2019, 7, 2421-2429.	5.5	14
31	Boosting the external quantum efficiency in perovskite light-emitting diodes by an exciton retrieving layer. Journal of Materials Chemistry C, 2019, 7, 8705-8711.	5.5	6
32	Poly(ethylene oxide)-assisted energy funneling for efficient perovskite light emission. Journal of Materials Chemistry C, 2019, 7, 8287-8293.	5.5	11
33	Using magneto-electroluminescence as a fingerprint to identify the spin polarization and spin–orbit coupling of magnetic nanoparticle doped polymer light emitting diodes. RSC Advances, 2019, 9, 15845-15851.	3.6	3
34	47-Fold EQE improvement in CsPbBr3 perovskite light-emitting diodes via double-additives assistance. Organic Electronics, 2019, 70, 264-271.	2.6	10
35	Trap-induced conversion from singlet fission to intersystem crossing <i>via in situ</i> heating of rubrene-based organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 553-557.	5.5	10
36	High performance and stable all-inorganic perovskite light emitting diodes by reducing luminescence quenching at PEDOT:PSS/Perovskites interface. Organic Electronics, 2019, 64, 47-53.	2.6	66

ZU-HONG XIONG

#	Article	IF	CITATIONS
37	A method towards 100% internal quantum efficiency for all-inorganic cesium halide perovskite light-emitting diodes. Organic Electronics, 2018, 58, 88-93.	2.6	11
38	Electrode quenching control for highly efficient CsPbBr ₃ perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles. Nanotechnology, 2018, 29, 175203.	2.6	26
39	Tuning the polarity of organic magnetic field effects in polymer light-emitting diodes by incorporating a colloidal quantum dots thin layer. Organic Electronics, 2018, 55, 165-169.	2.6	5
40	Intersystem Crossing and Triplet Fusion in Singlet-Fission-Dominated Rubrene-Based OLEDs Under High Bias Current. ACS Applied Materials & Interfaces, 2018, 10, 1948-1956.	8.0	50
41	84% efficiency improvement in all-inorganic perovskite light-emitting diodes assisted by a phosphorescent material. RSC Advances, 2018, 8, 15698-15702.	3.6	9
42	On the performance of polymer:organometal halide perovskite composite light emitting devices: The effects of polymer additives. Organic Electronics, 2018, 52, 350-355.	2.6	27
43	Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy, 2018, 50, 615-622.	16.0	103
44	Simultaneous Sign Change of Magneto-Electroluminescence and Magneto-Conductance in Polymer/Colloidal Quantum Dot Nanocomposites. Journal of Physical Chemistry C, 2017, 121, 8128-8135.	3.1	7
45	Highly Efficient Perovskite Light-Emitting Diodes Incorporating Full Film Coverage and Bipolar Charge Injection. Journal of Physical Chemistry Letters, 2017, 8, 1810-1818.	4.6	97
46	Guest concentration, bias current, and temperature-dependent sign inversion of magneto-electroluminescence in thermally activated delayed fluorescence devices. Scientific Reports, 2017, 7, 44396.	3.3	28
47	30-Fold efficiency enhancement achieved in the perovskite light-emitting diodes. RSC Advances, 2017, 7, 50571-50577.	3.6	7
48	Full coverage all-inorganic cesium lead halide perovskite film for high-efficiency light-emitting diodes assisted by 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene. Organic Electronics, 2017, 50, 480-484.	2.6	36
49	Supramolecular Motors on Graphite Surface Stabilized by Charge States and Hydrogen Bonds. ACS Nano, 2017, 11, 10236-10242.	14.6	7
50	Visualizing buried silicon atoms at the Cd-Si(111)- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>7</mml:mn><mml:mo>×interface with localized electrons. Physical Review B, 2017, 96, .</mml:mo></mml:mrow></mml:math 	ി:നങ്ക₂ ≺നന	າ l:ໝ າ>7
51	Nearly 100% Efficiency Enhancement of CH ₃ NH ₃ PbBr ₃ Perovskite Light-Emitting Diodes by Utilizing Plasmonic Au Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 3961-3969.	4.6	75
52	Ultralarge Magnetoâ€Electroluminescence in Exciplexâ€Based Devices Driven by Fieldâ€Induced Reverse Intersystem Crossing. Advanced Optical Materials, 2016, 4, 694-699.	7.3	31
53	Abnormal temperature dependent behaviors of intersystem crossing and triplet-triplet annihilation in organic planar heterojunction devices. Applied Physics Letters, 2016, 109, .	3.3	13
54	Molecular Spacing Modulated Conversion of Singlet Fission to Triplet Fusion in Rubrene-Based Organic Light-Emitting Diodes at Ambient Temperature. Journal of Physical Chemistry C, 2016, 120, 8380-8386.	3.1	40

ZU-HONG XIONG

#	Article	IF	CITATIONS
55	Magneto-conductance characteristics of trapped triplet–polaron and triplet–trapped polaron interactions in anthracene-based organic light emitting diodes. Physical Chemistry Chemical Physics, 2016, 18, 30733-30739.	2.8	13
56	In situ investigation of energy transfer in hybrid organic/colloidal quantum dot light-emitting diodes via magneto-electroluminescence. Physical Chemistry Chemical Physics, 2016, 18, 22373-22378.	2.8	6
57	Identify triplet-charge interaction in rubrene-based diodes using magneto-conductance: Coexistence of dissociation and scattering channels. Organic Electronics, 2016, 39, 207-213.	2.6	18
58	Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices. Scientific Reports, 2016, 6, 25331.	3.3	30
59	Realization of triplet–triplet annihilation in planar heterojunction exciplex-based organic light-emitting diodes. Organic Electronics, 2016, 28, 94-99.	2.6	14
60	Large magneto-conductance and magneto-electroluminescence in exciplex-based organic light-emitting diodes at room temperature. Applied Physics Letters, 2015, 107, .	3.3	24
61	Competition between singlet exciton fission, radiation, and dissociation measured in rubrene-doped amorphous films. Synthetic Metals, 2015, 207, 13-17.	3.9	13
62	Spin–orbital coupling induced high-field decay of magneto-electroluminescence in pristine Alq3-based organic light-emitting diodes. Organic Electronics, 2015, 22, 210-215.	2.6	13
63	Negative magnetoconductance effects in amorphous copper phthalocyanine thin film: trap-assisted bipolaron formation. Journal of Materials Chemistry C, 2015, 3, 12056-12060.	5.5	10
64	Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states. Applied Physics Letters, 2015, 107, .	3.3	5
65	Magnetoâ€Electroluminescence as a Tool to Discern the Origin of Delayed Fluorescence: Reverse Intersystem Crossing or Triplet–Triplet Annihilation?. Advanced Optical Materials, 2014, 2, 142-148.	7.3	70
66	Thermally activated singlet exciton fission observed in rubrene doped organic films. Organic Electronics, 2014, 15, 577-581.	2.6	21
67	Direct evidence for the electron–hole pair mechanism by studying the organic magneto-electroluminescence based on charge-transfer states. Organic Electronics, 2012, 13, 1774-1778.	2.6	14
68	Large contribution of triplet excitons to electro-fluorescence in small molecular organic light-emitting diodes. Organic Electronics, 2011, 12, 1512-1517.	2.6	8
69	STM study of a rubrene monolayer on Bi(001): Structural modulations. Physical Review B, 2011, 83, .	3.2	6
70	Strain-driven formation of rubrene crystalline films on Bi(001). Physical Review B, 2011, 83, .	3.2	11
71	Magnetoconductance of polymer–fullerene bulk heterojunction solar cells. Organic Electronics, 2009, 10, 1288-1292.	2.6	21
79	Spontaneous formation of Mn nanocluster arrays on a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 	2 9	19

72 display="inline"><mml:mrow><mml:mtext>Si</mml:mtext><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:min>111</mml:mn> observed with STM. Physical Review B, 2008, 78, .